Advertisement

Dual-Rate Non-Linear High Order Holds for Visual Servoing Applications

  • J. Ernesto Solanes
  • Leopoldo Armesto
  • Josep Tornero
  • Pau Muñoz-Benavent
  • Vicent Girbés
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7429)

Abstract

This paper introduces a novel concept of dual-rate non-linear high order holds, based on artificial neuronal networks, in order to improve control, robustness and stability margin of non-linear processes. The main idea is that artificial networks provide accurate inter-sampling data estimation in dual-rate systems, allowing controlling the process at the fastest possible rate. In addition to this, the paper compares the performance with other approaches taking into account the ideal but non-feasible closed loop at high frequency. For that purpose, the paper considers metrics such as mean square error and settling time to measure the overall performance. The proposed dual-rate non-linear holds have been tested in both, simulation and real processes, and particularly, in an industrial robot within an image-based visual servoing application. The new approach improves with respect to the conventional single-rate behavior and showing higher stability margin than conventional dual-rate holds.

Keywords

Visual servoing non-linear control machine learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chang, H.J., Kim, P.J., Song, D.S., Choi, J.Y.: Optical image stabilizing system using multirate fuzzy pid controller for mobile device camera. IEEE Transactions on Consumer Electronics 55(2), 303–311 (2009)CrossRefGoogle Scholar
  2. 2.
    Anderson, D.: Multirate and nonlinear controllers for low-cost laser tracking systems. In: 17th IFAC Symposium on Automatic Control in Aerospace (2007)Google Scholar
  3. 3.
    Tornero, J., Tomizuka, M.: Modeling, analysis and design tools for dual-rate systems. In: American Control Conf., pp. 4116–4121 (2002)Google Scholar
  4. 4.
    Ahrens, J., Tan, X., Khalil, H.: Multirate sampled-data output feedback control with application to smart material actuated systems. IEEE Transactions on Automatic Control 54(11), 2518–2529 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Armesto, L., Ippoliti, G., Longhi, S., Tornero, J.: Probabilistic self-localization and mapping - an asynchronous multirate approach. IEEE Robotics Automation Magazine 15(2), 77–88 (2008)CrossRefGoogle Scholar
  6. 6.
    Armesto, L., Tornero, J.: Dual-rate high order holds based on primitive functions. In: American Control Conf., pp. 1140–1145 (2003)Google Scholar
  7. 7.
    Huang, D., Xu, J.-X.: Discrete-time adaptive control for nonlinear systems with periodic parameters: A lifting approach. Asian Journal of Control (2011)Google Scholar
  8. 8.
    Diankov, R., Kuffner, J.: OpenRAVE: A planning architecture for autonomous robotics. Robotics Institue, Carnegie Mellon University, Tech. Rep. (July 2008)Google Scholar
  9. 9.
    Marchand, E., Spindler, F., Chaumette, F.: Visp for visual servoing: a generic software platform with a wide class of robot control skills. IEEE Robotics and Automation Magazine 12(4), 40–52 (2005)CrossRefGoogle Scholar
  10. 10.
    Martinet, P., Gallice, J., Khadraoui, D.: Vision based control law using 3d visual features. In: Committees, Econometrica, pp. 497–502 (1996)Google Scholar
  11. 11.
    Hutchinson, S., Hager, G., Corke, P.: A tutorial on visual servo control. IEEE Transactions on Robotics and Automation, 651–670 (October 1996)Google Scholar
  12. 12.
    Chaumette, F., Malis, E.: 2 1/2 d visual servoing: a possible solution to improve image-based and position-based visual servoings. In: Proceedings. IEEE International Conference on Robotics and Automation, ICRA 2000, vol. 1, pp. 630–635 (2000)Google Scholar
  13. 13.
    Chaumette, F., Hutchinson, S.: Visual servo control, part ii: Advanced approaches. IEEE Robotics and Automation Magazine 14(1), 109–118 (2007)CrossRefGoogle Scholar
  14. 14.
    Corke, P.: Robotics, Vision and Control: Fundamental algorithms in MATLAB. Springer Tracts in Advanced Robotics. Springer, Germany (2011)zbMATHCrossRefGoogle Scholar
  15. 15.
    Chaumette, Hutchinson, S.: Visual servo control, part i: Basic approaches. IEEE Robotics and Automation Magazine 13, 82–90 (2006)CrossRefGoogle Scholar
  16. 16.
    Solanes, J.E., Tornero, J., Armesto, L., Girbés, V.: Multi-rate Visual Servoing Based on Dual-Rate High Order Holds. In: Groß, R., Alboul, L., Melhuish, C., Witkowski, M., Prescott, T.J., Penders, J. (eds.) TAROS 2011. LNCS, vol. 6856, pp. 195–206. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Puget, P., Skordas, T.: An Optimal Solution for Mobile Camera Calibration. In: Faugeras, O. (ed.) ECCV 1990. LNCS, vol. 427, pp. 187–198. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  18. 18.
    Nissen, S.: Implementation of a fast artificial neural network library (fann). Department of Computer Science University of Copenhagen (DIKU), Tech. Rep. (2003), http://fann.sf.net

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • J. Ernesto Solanes
    • 1
  • Leopoldo Armesto
    • 1
  • Josep Tornero
    • 1
  • Pau Muñoz-Benavent
    • 1
  • Vicent Girbés
    • 1
  1. 1.Intitute of Design and ManufacturingUniversitat Politècnica de ValènciaValènciaSpain

Personalised recommendations