Cutting Down the Energy Consumed by Domestic Robots: Insights from Robotic Vacuum Cleaners

  • Florian Vaussard
  • Philippe Rétornaz
  • David Hamel
  • Francesco Mondada
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7429)

Abstract

The market of domestic service robots, and especially vacuum cleaners, has kept growing during the past decade. According to the International Federation of Robotics, more than one million units were sold worldwide in 2010. Currently, there is no in-depth analysis of the energetic impact of the introduction of this technology on the mass market. This topic is of prime importance in our energy-dependant society. This study aims at identifying key technologies leading to the reduction of the energy consumption of a domestic mobile robot, by exploring the design space using technologies issued from the robotic research field, such as the various localization and navigation strategies. This approach is validated through an in-depth analysis of seven vacuum-cleaning robots. These results are used to build a global assessment of the influential parameters. The major outcome is the assessment of the positive impact of both the ceiling-based visual localization and the laser-based localization approaches.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Alonso, I.: Service robotics. Service Robotics within the Digital Home, 89–114 (2011)Google Scholar
  3. 3.
    Breuer, T., Macedo, G.R.G., Hartanto, R., Hochgeschwender, N., Holz, D., Hegger, F., Jin, Z., Müller, C., Paulus, J., Reckhaus, M., Ruiz, J.A.Á., Plöger, P.G., Kraetzschmar, G.K.: Johnny: An Autonomous Service Robot for Domestic Environments. Journal of Intelligent and Robotic Systems 66(1-2), 245–272 (2012)CrossRefGoogle Scholar
  4. 4.
    Carrera, I., Moreno, H.A., Saltarén, R.J., Pérez, C., Puglisi, L., Cena, C.E.G.: ROAD: domestic assistant and rehabilitation robot. Med. Biol. Engineering and Computing 49(10), 1201–1211 (2011)CrossRefGoogle Scholar
  5. 5.
    De Almeida, A., Fong, J.: Domestic Service Robots [TC Spotlight]. IEEE Robotics & Automation Magazine 18(3), 18–20 (2011)CrossRefGoogle Scholar
  6. 6.
    Fiorini, P., Prassler, E.: Cleaning and Household Robots: A Technology Survey. Auton. Robots 9(3), 227–235 (2000)CrossRefGoogle Scholar
  7. 7.
    Jeong, W., Lee, K.: CV-SLAM: A new ceiling vision-based SLAM technique. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2005, pp. 3195–3200. IEEE (2005)Google Scholar
  8. 8.
    Konolige, K., Augenbraun, J., Donaldson, N., Fiebig, C., Shah, P.: A low-cost laser distance sensor. In: ICRA, pp. 3002–3008. IEEE (2008)Google Scholar
  9. 9.
    Palleja, T., Tresanchez, M., Teixido, M., Palacín, J.: Modeling floor-cleaning coverage performances of some domestic mobile robots in a reduced scenario. Robotics and Autonomous Systems 58(1), 37–45 (2010)CrossRefGoogle Scholar
  10. 10.
    Prassler, E., Kosuge, K.: Domestic Robotics.. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 1253–1281. Springer (2008)Google Scholar
  11. 11.
    Prassler, E., Ritter, A., Schaeffer, C., Fiorini, P.: A Short History of Cleaning Robots. Auton. Robots 9(3), 211–226 (2000)CrossRefGoogle Scholar
  12. 12.
    Vaussard, F., Bonani, M., Rétornaz, P., Martinoli, A., Mondada, F.: Towards Autonomous Energy-Wise RObjects. In: Groß, R., Alboul, L., Melhuish, C., Witkowski, M., Prescott, T.J., Penders, J. (eds.) TAROS 2011. LNCS, vol. 6856, pp. 311–322. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Yasutomi, F., Yamada, M., Tsukamoto, K.: Cleaning robot control. In: Proceedings. 1988 IEEE International Conference on Robotics and Automation, pp. 1839–1841. IEEE (1988)Google Scholar
  14. 14.
    Young, J.E., Hawkins, R., Sharlin, E., Igarashi, T.: Toward Acceptable Domestic Robots: Applying Insights from Social Psychology. I. J. Social Robotics 1(1), 95–108 (2009)CrossRefGoogle Scholar
  15. 15.
    Yuan, F., Twardon, L., Hanheide, M.: Dynamic path planning adopting human navigation strategies for a domestic mobile robot. In: IROS, pp. 3275–3281. IEEE (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Florian Vaussard
    • 1
  • Philippe Rétornaz
    • 1
  • David Hamel
    • 1
  • Francesco Mondada
    • 1
  1. 1.STI – LSROEPFLLausanneSwitzerland

Personalised recommendations