Approximation Algorithms for Massive High-Rate Data Streams

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 185)

Abstract

This paper complements our line of research on effectively and efficientlyprocessingmassivehigh − ratedatastreamsviaintelligentcompressiontechniques. In particular, here we provide approximationalgorithms adhering to the so-called non − lineardatastreamcompressionparadigm. This paradigm demonstrates its feasibility and reliability in the context of emerging data stream applications, such as environmentalsensornetworks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abadi, D.J., Lindner, W., Madden, S., Schuler, J.: An integration framework for sensor networks and data stream management systems. In: VLDB, pp. 1361–1364 (2004)Google Scholar
  2. 2.
    Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and Issues in Data Stream Systems. In: ACM PODS (2002)Google Scholar
  3. 3.
    Cai, Y.D., Clutterx, D., Papex, G., Han, J., Welgex, M., Auvilx, L.: MAIDS: Mining Alarming Incidents from Data Streams. In: ACM SIGMOD (2004)Google Scholar
  4. 4.
    Cormode, G., Garofalakis, M.N.: Sketching probabilistic data streams. In: SIGMOD Conference, pp. 281–292 (2007)Google Scholar
  5. 5.
    Cuzzocrea, A.: Synopsis Data Structures for Representing, Querying, and Mining Data Streams. In: Ferragine, V.E., Doorn, J.H., Rivero, L.C. (eds.) Encyclopedia of Database Technologies and Applications (2008)Google Scholar
  6. 6.
    Cuzzocrea, A.: CAMS: OLAPing Multidimensional Data Streams Efficiently. In: Pedersen, T.B., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2009. LNCS, vol. 5691, pp. 48–62. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Cuzzocrea, A.: Intelligent Techniques for Warehousing and Mining Sensor Network Data. IGI Global (2009)Google Scholar
  8. 8.
    Cuzzocrea, A.: A top-down approach for compressing data cubes under the simultaneous evaluation of multiple hierarchical range queries. J. Intell. Inf. Syst. 34(3), 305–343 (2010)CrossRefGoogle Scholar
  9. 9.
    Cuzzocrea, A., Chakravarthy, S.: Event-Based Compression and Mining of Data Streams. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES 2008, Part II. LNCS (LNAI), vol. 5178, pp. 670–681. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Cuzzocrea, A., Chakravarthy, S.: Event-based lossy compression for effective and efficient olap over data streams. Data Knowl. Eng. 69(7) (2010)Google Scholar
  11. 11.
    Cuzzocrea, A., Decker, H.: Non-linear Data Stream Compression: Foundations and Theoretical Results. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012, Part I. LNCS, vol. 7208, pp. 622–634. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Cuzzocrea, A., Furfaro, F., Masciari, E., Saccà, D., Sirangelo, C.: Approximate Query Answering on Sensor Network Data Streams. In: Stefanidis, A., Nittel, S. (eds.) GeoSensor Networks (2004)Google Scholar
  13. 13.
    Cuzzocrea, A., Furfaro, F., Mazzeo, G.M., Saccá, D.: A Grid Framework for Approximate Aggregate Query Answering on Summarized Sensor Network Readings. In: Meersman, R., Tari, Z., Corsaro, A. (eds.) OTM-WS 2004. LNCS, vol. 3292, pp. 144–153. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Cuzzocrea, A., Gabriele, S., Saccà, D.: High-performance data management and efficient aggregate query answering on environmental sensor networks by computational grids. In: DEXA Workshops, pp. 359–364 (2008)Google Scholar
  15. 15.
    Domingos, P., Hulten, G.: Mining High-Speed Data Streams. In: ACM SIGKDD (2000)Google Scholar
  16. 16.
    Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining Data Streams: A Review. ACM SIGMOD Record 34(2) (2005)Google Scholar
  17. 17.
    Garofalakis, M.N.: Distributed data streams. In: Encyclopedia of Database Systems, pp. 883–890 (2009)Google Scholar
  18. 18.
    Garofalakis, M.N., Gehrke, J., Rastogi, R.: Querying and mining data streams: you only get one look a tutorial. In: SIGMOD Conference, p. 635 (2002)Google Scholar
  19. 19.
    Gilbert, A., Guha, S., Indyk, P., Kotidis, Y., Muthukrishnan, S., Strauss, M.: Fast, Small-Space Algorithms for Approximate Histogram Maintenance. In: ACM STOC (2002)Google Scholar
  20. 20.
    Gilbert, A., Kotidis, Y., Muthukrishnan, S., Strauss, M.: One-Pass Wavelet Decompositions of Data Streams. IEEE Trans. on Knowledge and Data Engineering 15(3) (2003)Google Scholar
  21. 21.
    Guha, S., Koudas, N., Shim, K.: Data Streams and Histograms. In: ACM STOC (2001)Google Scholar
  22. 22.
    Ho, C.-T., Agrawal, R., Megiddo, N., Srikant, R.: Range Queries in OLAP Data Cubes. In: ACM SIGMOD (1997)Google Scholar
  23. 23.
    Knuth, D.E.: The Art of Computer Programming. Sorting and Searching, vol. 3. Addison-Wesley (1998)Google Scholar
  24. 24.
    Koudas, N., Srivastava, D.: Data stream query processing. In: ICDE, p. 1145 (2005)Google Scholar
  25. 25.
    Muthukrishnan, S.: Data Streams: Algorithms and Applications. In: ACM-SIAM SODA (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.ICAR-CNR and University of CalabriaCalabriaItaly

Personalised recommendations