Modeling and Storing Complex Network with Graph-Tree

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 185)

Abstract

The increased volume of information in recent decades and the emergence of new data types such as complex networks led to the need of development efficient methods for storage and handle these data.Management Systems Database are know for their efficiency and store and retrieve tradicional date as number and small strings. However theses systems need to be modified in order to support complex network data and keep the query processing along with the access methods, the most agile and efficient as possible. Thus the objective of this work is the development of an indexing structure, called Graph − tree that can store complex networks to allow binding prediction algorithms to be applied to large complex networks.

Keywords

Complex Network Resource Description Framework Graph Database Graph Mining Triple Store 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adamic, L.A., Huberman, B.A., Barab&aacutesi, A., Albert, R., Jeong, H., Bianconi, G.: Power-law distribution of the world wide web. Science 287(5461), 2115a+ (2000), http://dx.doi.org/10.1126/science.287.5461.2115a, doi:10.1126/science.287.5461.2115a
  2. 2.
    Albert, R., Jeong, H., Barabasi, A.L.: The diameter of the world wide web (1999), http://arxiv.org/abs/cond-mat/9907038
  3. 3.
    Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput. Surv. 40, 1:1–1:39 (2008), doi:http://doi.acm.org/10.1145/1322432.1322433 CrossRefGoogle Scholar
  4. 4.
    Backstrom, L., Leskovec, J.: Supervised random walks: predicting and recommending links in social networks. In: King, I., Nejdl, W., Li, H. (eds.) Proceedings of the Forth International Conference on Web Search and Web Data Mining, WSDM 2011, Hong Kong, China, February 9-12, pp. 635–644. ACM (2011), doi:http://doi.acm.org/10.1145/1935826.1935914
  5. 5.
    Van den Bercken, J., Seeger, B.: An evaluation of generic bulk loading techniques. In: Apers, P.M.G., Atzeni, P., Ceri, S., Paraboschi, S., Ramamohanarao, K., Snodgrass, R.T. (eds.) International Conference on Very Large Databases (VLDB), pp. 461–470. Morgan Kaufmann, Roma (2001)Google Scholar
  6. 6.
    Chakrabarti, D., Wang, Y., Wang, C., Leskovec, J., Faloutsos, C.: Epidemic thresholds in real networks. ACM Trans. Inf. Syst. Secur. 10(4), 1–26 (2008), http://doi.acm.org/10.1145/1284680.1284681 CrossRefGoogle Scholar
  7. 7.
    Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A distributed storage system for structured data. ACM Trans. Comput. Syst. 26(2), 4:1–4:26 (2008), http://doi.acm.org/10.1145/1365815.1365816, doi:10.1145/1365815.1365816MATHCrossRefGoogle Scholar
  8. 8.
    Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008), http://dx.doi.org/10.1145/1327452.1327492 CrossRefGoogle Scholar
  9. 9.
    DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly available key-value store. SIGOPS Oper. Syst. Rev. 41(6), 205–220 (2007), http://doi.acm.org/10.1145/1323293.1294281, doi:10.1145/1323293.1294281CrossRefGoogle Scholar
  10. 10.
    Dijkstra, E.W.: A Note on Two Problems in Connection with Graphs. Numerical Mathematics 1, 269–271 (1959), http://www-m3.ma.tum.de/twiki/pub/MN0506/WebHome/dijkstra.pdf (last visited: May 27, 2008)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Simoudis, E., Han, J., Fayyad, U.M. (eds.) Proceedings of the Second International Conference on KDD 1996, pp. 226–231. AAAI Press (1996)Google Scholar
  12. 12.
    Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. In: SIGCOMM 1999, vol. 1, pp. 251–262. ACM Press, Cambridge (1999)CrossRefGoogle Scholar
  13. 13.
    Fortunato, S.: Community detection in graphs. Physics Reports 486(3-5), 75–174 (2010), http://dx.doi.org/10.1016/j.physrep.2009.11.002, doi:10.1016/j.physrep.2009.11.002MathSciNetCrossRefGoogle Scholar
  14. 14.
    Johnson, T., Shasha, D.: The performance of current b-tree algorithms. ACM Transactions on Database Systems (TODS) 18(1), 51–101 (1993)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kang, U., Tsourakakis, C.E., Appel, A.P., Faloutsos, C., Leskovec, J.: Radius plots for mining tera-byte scale graphs: Algorithms, patterns, and observations. In: SIAM SDM, pp. 548–558. Columbus, Ohio (2010)Google Scholar
  16. 16.
    Lakshman, A.: Cassandra - a structured storage system on a p2p network (2012), http://www.facebook.com
  17. 17.
    Lassila, O., Swick, R.R., Wide, W., Consortium, W.: Resource description framework (rdf) model and syntax specification (1998)Google Scholar
  18. 18.
    Leskovec, J., Backstrom, L., Kumar, R., Tomkins, A.: Microscopic evolution of social networks. In: KDD 2008: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 462–470. ACM, New York (2008), doi:http://doi.acm.org/10.1145/1401890.1401948 CrossRefGoogle Scholar
  19. 19.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Eleventh ACM SIGKDD, pp. 177–187. ACM Press, New York (2005), doi:http://doi.acm.org/10.1145/1081870.1081893 Google Scholar
  20. 20.
    Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters. CoRR abs/0810.1355 (2008)Google Scholar
  21. 21.
    Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. In: CIKM 2003: Proceedings of the Twelfth International Conference on Information and Knowledge Management, pp. 556–559. ACM, New York (2003), doi:http://doi.acm.org/10.1145/956863.956972 CrossRefGoogle Scholar
  22. 22.
    Milgram, S.: The small world problem. Psychology Today 2, 60–67 (1967)Google Scholar
  23. 23.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-foreign language for data processing. In: SIGMOD 2008: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1099–1110. ACM, New York (2008), doi:http://dx.doi.org/10.1145/1376616.1376726 CrossRefGoogle Scholar
  25. 25.
    Palmer, C.R., Gibbons, P.B., Faloutsos, C.: Anf: A fast and scalable tool for data mining in massive graphs. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, vol. 1, pp. 81–90. ACM Press, Edmonton (2002)Google Scholar
  26. 26.
    Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., DeWitt, D.J., Madden, S., Stonebraker, M.: A comparison of approaches to large-scale data analysis. In: Çetintemel, U., Zdonik, S.B., Kossmann, D., Tatbul, N. (eds.) SIGMOD Conference, pp. 165–178. ACM (2009)Google Scholar
  27. 27.
    Redner, S.: How popular is your paper? an empirical study of the citation distribution (1998), http://arxiv.org/abs/cond-mat/9804163
  28. 28.
    Sidirourgos, L., Goncalves, R., Kersten, M., Nes, N., Manegold, S.: Column-store support for rdf data management: not all swans are white. Proc. VLDB Endow. 1(2), 1553–1563 (2008), doi:http://doi.acm.org/10.1145/1454159.1454227 Google Scholar
  29. 29.
    Tsourakakis, C.E.: Fast counting of triangles in large real networks without counting: Algorithms and laws. In: ICDM 2008, pp. 608–617. IEEE Computer Society, Washington, DC (2008), doi:http://dx.doi.org/10.1109/ICDM.2008.72 Google Scholar
  30. 30.
    Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y., Wilkins, D.: A comparison of a graph database and a relational database: a data provenance perspective. In: Proceedings of the 48th Annual Southeast Regional Conference, ACM SE 2010, pp. 42:1–42:6. ACM, New York (2010), http://doi.acm.org/10.1145/1900008.1900067, doi:10.1145/1900008.1900067Google Scholar
  31. 31.
    Voldemort, P.: Project voldemort: A distributed database (2012), http://project-voldemort.com/
  32. 32.
    Wang, W., Wang, C., Zhu, Y., Shi, B., Pei, J., Yan, X., Han, J.: Graphminer: a structural pattern-mining system for large disk-based graph databases and its applications. In: SIGMOD 2005: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, pp. 879–881. ACM, New York (2005), doi:http://doi.acm.org/10.1145/1066157.1066273 CrossRefGoogle Scholar
  33. 33.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(6684), 440–442 (1998), doi:http://dx.doi.org/10.1038/30918 CrossRefGoogle Scholar
  34. 34.
    Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web data management. Proc. VLDB Endow. 1(1), 1008–1019 (2008), doi:http://doi.acm.org/10.1145/1453856.1453965 Google Scholar
  35. 35.
    Zhang, T., Ramakrishnan, R., Livny, M.: Birch: An efficient data clustering method for very large databases. In: Jagadish, H.V., Mumick, I.S. (eds.) ACM SIGMOD International Conference on Management of Data. SIGMOD Record, vol. 25(2), vol. 1, pp. 103–114. ACM Press, Montreal (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Federal University of Espírito Santo São MateusSão MateusBrazil
  2. 2.IBM Research BrazilSão PauloBrazil

Personalised recommendations