Granular Knowledge Discovery Framework

A Case Study of Incident Data Reporting System
  • Adam Krasuski
  • Dominik Ślęzak
  • Karol Kreński
  • Stanisław Łazowy
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 185)

Abstract

A platform for fire & rescue incident data reporting system (IDRS) is presented as an example how the domain knowledge driven granule formation can assist in knowledge discovery and decision support. The current modeling, monitoring and reporting systems rarely take advantage of semantic background of the analyzed phenomena. We discuss how to build and tune practically meaningful models of processes by means of granules approximating their states and instances. We show how the layers of model creation should interact with lower-level layers of data preparation and transformation. We illustrate the proposed methodology by several IDRS related use cases. We also discuss the complexity of available data sources that can be utilized to make the proposed approach more useful.

Keywords

Knowledge Discovery Domain Knowledge Granular Modeling Layered Architectures Fire Services Text Data Heterogeneous Data Sources 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bargiela, A., Pedrycz, W.: Granular Computing: An Introduction, vol. 717. Springer (2003)Google Scholar
  2. 2.
    Moss, L.T., Atre, S.: Business Intelligence Roadmap: The Complete Project Lifecycle for Decision-support Applications. Addison-Wesley (2003)Google Scholar
  3. 3.
    Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From Data Mining to Knowledge Discovery in Databases. AI Magazine 17(3), 37 (1996)Google Scholar
  4. 4.
    Bazan, J.G., Skowron, A., Ślęzak, D., Wróblewski, J.: Searching for the Complex Decision Reducts: The Case Study of the Survival Analysis. In: International Symposium on Methodologies in Intelligent Systems, Maebashi, Japan, October 28-31, pp. 160–168 (2003)Google Scholar
  5. 5.
    Hand, D.J.: Statistics: A Very Short Introduction. Oxford University Press (2008)Google Scholar
  6. 6.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering: A Review. ACM Computing Surveys 31(3), 264–323 (1999)CrossRefGoogle Scholar
  7. 7.
    Yang, J., Zhong, N., Yao, Y., Wang, J.: Local Peculiarity Factor and Its Application in Outlier Detection. In: Knowledge Discovery in Databases, pp. 776–784 (2008)Google Scholar
  8. 8.
    Szczuka, M., Ślęzak, D.: Representation and Evaluation of Granular Systems. In: Watada, J., Watanabe, T., Phillips-Wren, G., Howlett, R.J., Jain, L.C. (eds.) Intelligent Decision Technologies. SIST, vol. 15, pp. 287–296. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Gama, J.: Knowledge Discovery from Data Streams. Chapman & Hall/CRC (2010)Google Scholar
  10. 10.
    Babitski, G., Bergweiler, S., Hoffmann, J., Schön, D., Stasch, C., Walkowski, A.C.: Ontology-Based Integration of Sensor Web Services in Disaster Management. In: Janowicz, K., Raubal, M., Levashkin, S. (eds.) GeoS 2009. LNCS, vol. 5892, pp. 103–121. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Kreński, K., Krasuski, A., Łazowy, S.: Data Mining and Shallow Text Analysis for the Data of State Fire Service. In: Concurrency, Specification and Programming - XXth International Workshop, CS&P 2011, Pułtusk, Poland, September 28-30, pp. 313–321 (2012)Google Scholar
  12. 12.
    Patankar, S.: Numerical Heat Transfer and Fluid Flow. Series in Computational Methods in Mechanics and Thermal Sciences, vol. 67 (1980)Google Scholar
  13. 13.
    Krasuski, A., Kreński, K., Łazowy, S.: A Method for Estimating the Efficiency of Commanding in the State Fire Service of Poland. Fire Technology, 1–11 (2011)Google Scholar
  14. 14.
    Krasuski, A., Kreński, K., Wasilewski, P., Łazowy, S.: Granular Approach in Knowledge Discovery: Real Time Blockage Management in Fire Service. In: Li, T., Nguyen, H.S., Wang, G., Gryzma-Busse, J., Janicki, R., Hassanien, A.E., Yu, H. (eds.) RSKT 2012. LNCS (LNAI), vol. 7414, pp. 416–421. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Gadomski, A., Bologna, S., Costanzo, G., Perini, A., Schaerf, M.: Towards Intelligent Decision Support Systems for Emergency Managers: The IDA Approach. International Journal of Risk Assessment and Management 2(3), 224–242 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Adam Krasuski
    • 1
  • Dominik Ślęzak
    • 2
    • 3
  • Karol Kreński
    • 1
  • Stanisław Łazowy
    • 1
  1. 1.The Main School of Fire ServiceWarsawPoland
  2. 2.Institute of MathematicsUniversity of WarsawWarsawPoland
  3. 3.Infobright Inc.WarsawPoland

Personalised recommendations