Collective Classification Techniques: An Experimental Study

  • Tomasz Kajdanowicz
  • Przemyslaw Kazienko
  • Marcin Janczak
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 185)

Abstract

Collective classification is the area in machine learning, in which unknown nodes in the network are classified based on the classes assigned to the known nodes and the network structure only. Three collective classification algorithms were described and examined in the paper: Iterative Classification (ICA), Gibbs Sampling (GS) and Loopy Belief Propagation (LBP). Experiments on various networks revealed that greater number of output classes decreases classification accuracy,GS provides better results than ICA and LBP outperforms others for dense structures while it is worse for sparse networks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bu, D., Zhao, Y., Cai, L., Xue, H., Zhu, X., Lu, H., Zhang, J., Sun, S., Ling, L., Zhang, N., Li, G., Chen, R.: Topological structure analysis of the protein-protein interaction network in budding yeast. Nucleic Acids Research 31(9), 2443–2450 (2003)CrossRefGoogle Scholar
  2. 2.
    Desrosiers, C., Karypis, G.: Within-Network Classification Using Local Structure Similarity. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS, vol. 5781, pp. 260–275. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Gallagher, B., Eliassi-Rad, T.: Leveraging label-independent features for classification in sparsely labeled networks: An empirical study. In: Proceedings of Second ACM SIGKDD Workshop on Social Network Mining and Analysis, SNA-KDD 2008 (2008)Google Scholar
  4. 4.
    Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721–741 (1984)MATHCrossRefGoogle Scholar
  5. 5.
    Kazienko, P., Kajdanowicz, T.: Label-dependent node classification in the network. Neurocomputing 75(1), 199–209 (2012)CrossRefGoogle Scholar
  6. 6.
    Knobbe, A.J., de Haas, M., Siebes, A.: Propositionalisation and Aggregates. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 277–288. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Lu, Q., Getoor, L.: Link-based classification. In: Proceedings of 20th International Conference on Machine Learning, ICML, San Francisco, pp. 496–503 (2003)Google Scholar
  8. 8.
    Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Physical Review E 74, 036104 (2006)CrossRefGoogle Scholar
  9. 9.
    Nooy, W., Mrvar, A., Batagelj, V.: Exploratory Social Network Analysis with Pajek, ch. 11. Cambridge University Press (2004)Google Scholar
  10. 10.
    Pearl, J.: Probabilistic reasoning in intelligent systems. Morgan Kaufmann (1988)Google Scholar
  11. 11.
    Perlich, C., Provost, F.: Distribution-based aggregation for relational learning with identifier attributes. Machine Learning 62(1-2), 65–105 (2006)CrossRefGoogle Scholar
  12. 12.
    Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.: Collective classification in network data. Artificial Intelligence Magazine 29(3), 93–106 (2008)Google Scholar
  13. 13.
    Taskar, B., Abbeel, P., Koller, D.: Discriminative probabilistic models for relational data. In: Proceedings of 18th Conference in Uncertainty in Artificial Intelligence. Morgan Kaufmann, San Francisco (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tomasz Kajdanowicz
    • 1
  • Przemyslaw Kazienko
    • 1
  • Marcin Janczak
    • 1
  1. 1.Department of Computer Science and ManagementWroclaw University of TechnologyWroclawPoland

Personalised recommendations