Applying CUDA Technology in DCT-Based Method of Query Selectivity Estimation

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 185)

Abstract

The problem of efficient calculation of query selectivity estimation is considered in this paper. The selectivity parameter allows database query optimizer to estimate the size of the data satisfying given condition, which is needed to choose the best query execution plan. Obtaining query selectivity in case of a multi-attribute selection condition requires a representation of multidimensional attributes values distribution. This paper describes in details solution of this problem, which utilizes Discrete Cosine Transform and CUDA-based algorithm for obtaining selectivity estimation. There are also some remarks about efficiency and advantages of this approach.

Keywords

Query Selectivity Estimation Discrete Cosine Transform CUDA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Augustyn, D.R.: Applying Advanced Methods of Query Selectivity Estimation in Oracle DBMS. In: Cyran, K.A., Kozielski, S., Peters, J.F., Stańczyk, U., Wakulicz-Deja, A. (eds.) Man-Machine Interactions. AISC, vol. 59, pp. 585–593. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Chakrabarti, K., Garofalakis, M., Rastogi, R., Shim, K.: Approximate query processing using wavelets. The VLDB Journal 10, 199–223 (2001)MATHGoogle Scholar
  3. 3.
    Furfaro, F., Mazzeo, G.M., Sirangelo, C.: Exploiting Cluster Analysis for Constructing Multi-dimensional Histograms on Both Static and Evolving Data. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 442–459. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Getoor, L., Taskar, B., Koller, D.: Selectivity estimation using probabilistic models. SIGMOD Rec. 30, 461–472 (2001)CrossRefGoogle Scholar
  5. 5.
    Harris, M.: Optimizing Parallel Reduction in CUDA (2011), http://www.uni-graz.at/~haasegu/Lectures/GPU_CUDA/Lit/reduction.pdf
  6. 6.
    Lee, J.H., Kim, D.H., Chung, C.W.: Multi-dimensional selectivity estimation using compressed histogram information. In: Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, SIGMOD 1999, pp. 205–214. ACM, New York (1999), http://doi.acm.org/10.1145/304182.304200, doi:10.1145/304182.304200CrossRefGoogle Scholar
  7. 7.
    NVidia Corporation: NVIDIA CUDATMC Programming Guide, version 4.1 (2011), http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
  8. 8.
    NVidia Corporation: NVIDIA GPU Computing Documentation, CUFFT Library User Guide (2012), http://developer.nvidia.com/nvidia-gpu-computing-documentation
  9. 9.
    Scott, D.W., Sain, S.R.: Multi-Dimensional Density Estimation, pp. 229–263. Elsevier, Amsterdam (2004)Google Scholar
  10. 10.
    Yan, F., Hou, W.C., Jiang, Z., Luo, C., Zhu, Q.: Selectivity estimation of range queries based on data density approximation via cosine series. Data Knowl. Eng. 63, 855–878 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Computer ScienceSilesian University of TechnologyGliwicePoland

Personalised recommendations