Skip to main content

Abstract

We consider the problem of constructing explicit Hitting sets for Combinatorial Shapes, a class of statistical tests first studied by Gopalan, Meka, Reingold, and Zuckerman (STOC 2011). These generalize many well-studied classes of tests, including symmetric functions and combinatorial rectangles. Generalizing results of Linial, Luby, Saks, and Zuckerman (Combinatorica 1997) and Rabani and Shpilka (SICOMP 2010), we construct hitting sets for Combinatorial Shapes of size polynomial in the alphabet, dimension, and the inverse of the error parameter. This is optimal up to polynomial factors. The best previous hitting sets came from the Pseudorandom Generator construction of Gopalan et al., and in particular had size that was quasipolynomial in the inverse of the error parameter.

Our construction builds on natural variants of the constructions of Linial et al. and Rabani and Shpilka. In the process, we construct fractional perfect hash families and hitting sets for combinatorial rectangles with stronger guarantees. These might be of independent interest.

Many proofs are missing from this extended abstract. The full version is on the arxiv.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.: Random walks, universal traversal sequences, and the complexity of maze problems. In: 20th Annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico, October 29-31, pp. 29–31. IEEE (1979)

    Google Scholar 

  2. Alon, N., Feige, U., Wigderson, A., Zuckerman, D.: Derandomized graph products. Computational Complexity 5, 60–75 (1995), doi:10.1007/BF01277956

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Armoni, R., Saks, M., Wigderson, A., Zhou, S.: Discrepancy sets and pseudorandom generators for combinatorial rectangles. In: 37th Annual Symposium on Foundations of Computer Science, Burlington, VT, pp. 412–421. IEEE Comput. Soc. Press, Los Alamitos (1996)

    Google Scholar 

  5. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical query model. J. ACM 50(4), 506–519 (2003)

    Article  MathSciNet  Google Scholar 

  6. Even, G., Goldreich, O., Luby, M., Nisan, N., Veličković, B.: Efficient approximation of product distributions. Random Structures Algorithms 13(1), 1–16 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Feller, W.: An Introduction to Probability Theory and its Applications, vol. 2. Wiley (1971)

    Google Scholar 

  8. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with 0(1) worst case access time. J. ACM 31(3), 538–544 (1984)

    Article  MATH  Google Scholar 

  9. Gopalan, P., Meka, R., Reingold, O., Zuckerman, D.: Pseudorandom generators for combinatorial shapes. In: STOC, pp. 253–262 (2011)

    Google Scholar 

  10. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bulletin of the AMS 43(4), 439–561 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits: Derandomizing the XOR lemma. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, El Paso, Texas, May 4-6, pp. 220–229 (1997)

    Google Scholar 

  12. Linial, N., Luby, M., Saks, M., Zuckerman, D.: Efficient construction of a small hitting set for combinatorial rectangles in high dimension. Combinatorica 17, 215–234 (1997), doi:10.1007/BF01200907

    Article  MathSciNet  MATH  Google Scholar 

  13. Lovett, S., Reingold, O., Trevisan, L., Vadhan, S.: Pseudorandom Bit Generators That Fool Modular Sums. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX and RANDOM 2009. LNCS, vol. 5687, pp. 615–630. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Lu, C.-J.: Hyper-encryption against space-bounded adversaries from on-line strong extractors, pp. 257–271

    Google Scholar 

  15. Meka, R., Zuckerman, D.: Small-bias spaces for group products. These proceedings (2009)

    Google Scholar 

  16. Moser, R.A., Tardos, G.: A constructive proof of the general lovász local lemma. J. ACM 57(2) (2010)

    Google Scholar 

  17. Naor, J., Naor, M.: Small-bias probability spaces: Efficient constructions and applications. SIAM Journal on Computing 22(4), 838–856 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nisan, N.: Pseudorandom generators for space-bounded computation. Combinatorica 12(4), 449–461 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nisan, N., Wigderson, A.: Hardness vs. randomness. J. Comput. Syst. Sci. 49(2), 149–167 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nisan, N., Zuckerman, D.: Randomness is linear in space. Journal of Computer and System Sciences 52(1), 43–52 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rabani, Y., Shpilka, A.: Explicit construction of a small epsilon-net for linear threshold functions. SIAM J. Comput. 39(8), 3501–3520 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schmidt, J.P., Siegel, A.: The analysis of closed hashing under limited randomness (extended abstract). In: STOC, pp. 224–234 (1990)

    Google Scholar 

  23. Shaltiel, R., Umans, C.: Pseudorandomness for approximate counting and sampling. Computational Complexity 15(4), 298–341 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bhaskara, A., Desai, D., Srinivasan, S. (2012). Optimal Hitting Sets for Combinatorial Shapes. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2012 2012. Lecture Notes in Computer Science, vol 7408. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32512-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32512-0_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32511-3

  • Online ISBN: 978-3-642-32512-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics