Skip to main content

Abstract

The spectral norm of a Boolean function f:{0,1}n → { − 1,1} is the sum of the absolute values of its Fourier coefficients. This quantity provides useful upper and lower bounds on the complexity of a function in areas such as learning theory, circuit complexity, and communication complexity. In this paper, we give a combinatorial characterization for the spectral norm of symmetric functions. We show that the logarithm of the spectral norm is of the same order of magnitude as r(f)log(n/r(f)) where r(f) =  max {r 0,r 1}, and r 0 and r 1 are the smallest integers less than n/2 such that f(x) or \(f(x) \cdot \textnormal{\textsc{parity}}(x)\) is constant for all x with ∑ x i  ∈ [r 0, n − r 1]. We mention some applications to the decision tree and communication complexity of symmetric functions.

A full version can be found online [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ada, A., Fawzi, O., Hatami, H.: Spectral norm of symmetric functions. arXiv:1205.5282 (2012)

    Google Scholar 

  2. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. J. ACM 48(4), 778–797 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bruck, J., Smolensky, R.: Polynomial threshold functions, ac0 functions, and spectral norms. SIAM J. Comput. 21(1), 33–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. de Wolf, R.: A note on quantum algorithms and the minimal degree of ε-error polynomials for symmetric functions. Quantum Inf. Comput. 8(10), 943–950 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Goldmann, M., Håstad, J., Razborov, A.A.: Majority gates vs. general weighted threshold gates. Comput. Complex., 277–300 (1992)

    Google Scholar 

  6. Green, B., Sanders, T.: Boolean functions with small spectral norm. Geom. Funct. Anal. 18(1), 144–162 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Grolmusz, V.: On the power of circuits with gates of low l1 norms. Theor. Comput. Sci. 188(1-2), 117–128 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grolmusz, V.: Harmonic analysis, real approximation, and the communication complexity of boolean functions. Algorithmica 23(4), 341–353 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kalai, A.T., Klivans, A.R., Mansour, Y., Servedio, R.A.: Agnostically learning halfspaces. SIAM J. Comput. 37(6), 1777–1805 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Klivans, A.R., Sherstov, A.A.: Lower bounds for agnostic learning via approximate rank. Comput. Complex. 19(4), 581–604 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kolountzakis, M.N., Lipton, R.J., Markakis, E., Mehta, A., Vishnoi, N.K.: On the fourier spectrum of symmetric boolean functions. Combinatorica 29(3), 363–387 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kushilevitz, E., Mansour, Y.: Learning decision trees using the fourier spectrum. In: Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing, STOC 1991, pp. 455–464. ACM, New York (1991)

    Chapter  Google Scholar 

  13. Lee, T., Shraibman, A.: Lower bounds in communication complexity, vol. 3. Now Publishers Inc. (2009)

    Google Scholar 

  14. O’Donnell, R., Servedio, R.A.: Extremal properties of polynomial threshold functions. J. Comput. Syst. Sci. 74(3), 298–312 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. O’Donnell, R., Wright, J., Zhou, Y.: The Fourier Entropy–Influence Conjecture for Certain Classes of Boolean Functions. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 330–341. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Paturi, R.: On the degree of polynomials that approximate symmetric Boolean functions (preliminary version). In: Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, pp. 468–474. ACM, New York (1992)

    Chapter  Google Scholar 

  17. Razborov, A.: Quantum communication complexity of symmetric predicates. Izvestiya: Mathematics 67(1), 145–159 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sherstov, A.A.: Approximate inclusion-exclusion for arbitrary symmetric functions. Comput. Complex. 18(2), 219–246 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sherstov, A.A.: The pattern matrix method. SIAM J. Comput. 40(6), 1969–2000 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shi, Y., Zhang, Z.: Communication complexities of symmetric XOR functions. Quantum Inf. Comput. (available at arXiv:0808.1762) 9, 255–263 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Shpilka, A., Tal, A.: On the minimal fourier degree of symmetric boolean functions. In: Proceedings of the 2011 IEEE 26th Annual Conference on Computational Complexity, CCC 2011, pp. 200–209. IEEE Computer Society, Washington, DC (2011)

    Chapter  Google Scholar 

  22. Siu, K.-Y., Bruck, J.: On the power of threshold circuits with small weights. SIAM J. Discrete Math. 4(3), 423–435 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ada, A., Fawzi, O., Hatami, H. (2012). Spectral Norm of Symmetric Functions. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2012 2012. Lecture Notes in Computer Science, vol 7408. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32512-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32512-0_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32511-3

  • Online ISBN: 978-3-642-32512-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics