We consider several variants of a basic resource replication problem in this paper, and propose new approximation results for them. These problems are of fundamental interest in the areas of P2P networks, sensor networks and ad hoc networks, where optimal placement of replicas is the main bottleneck on performance. We observe that the threshold graph technique, which has been applied to several k-center type problems, yields simple and efficient approximation algorithms for resource replication problems. Our results range from positive (efficient, small constant factor, approximation algorithms) to extremely negative (impossibility of existence of any algorithm with non-trivial approximation guarantee, i.e., with positive approximation ratio) for different versions of the problem.


Approximation Algorithm Polynomial Time Data Item Polynomial Time Algorithm Facility Location Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baev, I.D., Rajaraman, R.: Approximation algorithms for data placement in arbitrary networks. In: SODA, pp. 661–670 (2001)Google Scholar
  2. 2.
    Baev, I.D., Rajaraman, R., Swamy, C.: Approximation algorithms for data placement problems. SIAM J. Comput. 38(4), 1411–1429 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bar-Ilan, J., Kortsarz, G., Peleg, D.: How to allocate network centers. J. Algorithms 15(3), 385–415 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Charikar, M., Khuller, S.: A robust maximum completion time measure for scheduling. In: SODA, pp. 324–333 (2006)Google Scholar
  5. 5.
    Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility location problems with outliers. In: SODA, pp. 642–651 (2001)Google Scholar
  6. 6.
    Edmonds, J.: Paths, trees, and flowers. In: Gessel, I., Rota, G.-C. (eds.) Classic Papers in Combinatorics, Modern Birkhuser Classics, pp. 361–379. Birkhuser, Boston (1987)Google Scholar
  7. 7.
    Edmonds, J., Fulkerson, D.R.: Bottleneck extrema. Journal of Combinatorial Theory 8(3), 299–306 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Feige, U., Peleg, D., Kortsarz, G.: The dense k-subgraph problem. Algorithmica 29(3), 410–421 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Golubchik, L., Khanna, S., Khuller, S., Thurimella, R., Zhu, A.: Approximation algorithms for data placement on parallel disks. ACM Transactions on Algorithms 5(4) (2009)Google Scholar
  10. 10.
    Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38, 293–306 (1985)zbMATHCrossRefGoogle Scholar
  11. 11.
    Guha, S., Munagala, K.: Improved algorithms for the data placement problem. In: SODA, pp. 106–107 (2002)Google Scholar
  12. 12.
    Gupta, A., Krishnaswamy, R., Kumar, A., Segev, D.: Scheduling with Outliers. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX and RANDOM 2009. LNCS, vol. 5687, pp. 149–162. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem. Mathematics of Operations Research 10(2), 180–184 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. J. ACM 33(3), 533–550 (1986)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Khuller, S., Sussmann, Y.J.: The capacitated k-center problem. SIAM J. Discrete Math. 13(3), 403–418 (2000)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ko, B.-J., Rubenstein, D.: Distributed, self-stabilizing placement of replicated resources in emerging networks. In: ICNP, pp. 6–15 (2003)Google Scholar
  17. 17.
    Ko, B.-J., Rubenstein, D.: Distributed server replication in large scale networks. In: NOSSDAV, pp. 127–132 (2004)Google Scholar
  18. 18.
    Korupolu, M.R., Greg Plaxton, C., Rajaraman, R.: Analysis of a local search heuristic for facility location problems. In: SODA, pp. 1–10 (1998)Google Scholar
  19. 19.
    Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The matroid median problem. In: SODA, pp. 1117–1130 (2011)Google Scholar
  20. 20.
    Meyerson, A., Munagala, K., Plotkin, S.A.: Web caching using access statistics. In: SODA, pp. 354–363 (2001)Google Scholar
  21. 21.
    Saha, B., Srinivasan, A.: A new approximation technique for resource-allocation problems. In: ICS, pp. 342–357 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Samir Khuller
    • 1
  • Barna Saha
    • 2
  • Kanthi K. Sarpatwar
    • 1
  1. 1.Department of Computer ScienceUniversity of Maryland (College Park)USA
  2. 2.AT&T Shannon Research LaboratoryUSA

Personalised recommendations