Boundary-Value Problems for ODE

  • Simon Širca
  • Martin Horvat
Part of the Graduate Texts in Physics book series (GTP)


This chapter first deals with various finite-difference methods for scalar boundary-value problems involving ordinary differential equations and for systems of such problems. The concepts of consistency, stability and convergence are introduced, as well as methods to increase the local solution precision by extrapolation. Shooting methods are offered as a clear alternative to difference methods in the case of non-linear equations and their systems. A separate section is devoted to various types of discretizations that mirror the asymptotic physics regimes of the underlying differential equation. Collocation and weighted-residual methods are presented. Several approaches to boundary-value problems with eigenvalues are attempted: finite-difference methods, shooting methods involving the Prüfer transformation, and the Pruess method. The treatment of problems in which the eigenvalues appear in the boundary conditions is also illustrated. Examples and Problems include the non-linear Gelfand–Bratu equation, diffusion and reaction in a catalytic pellet, deflection of an inhomogeneous beam, the one-dimensional Schrödinger equation, and a boundary-layer problem.


Difference Scheme Collocation Method Collocation Point Uniform Mesh Shooting Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H.B. Keller, Numerical Methods for Two-Point Boundary-Value Problems (Blaisdell, Waltham, 1968) MATHGoogle Scholar
  2. 2.
    U.M. Ascher, R.M.M. Mattheij, R.D. Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations (SIAM, Philadelphia, 1995) MATHCrossRefGoogle Scholar
  3. 3.
    U. Ascher, R.D. Russell, Reformulation of boundary value problems into “standard form”. SIAM Rev. 23, 238 (1981) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    E. Isaacson, H.B. Keller, Analysis of Numerical Methods (Wiley, New York, 1966) MATHGoogle Scholar
  5. 5.
    P. Henrici, Discrete Variable Methods in Ordinary Differential Equations (Wiley, New York, 1962) MATHGoogle Scholar
  6. 6.
    P. Henrici, Error Propagation for Difference Methods (Wiley, New York, 1963) MATHGoogle Scholar
  7. 7.
    E.W. Larsen, J.E. Morel, W.F. Miller, Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes. J. Comput. Phys. 69, 283 (1987) MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    E.W. Larsen, J.E. Morel, Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes, II. J. Comput. Phys. 83, 212 (1989) MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, 10th edn. (Dover, Mineola, 1972) MATHGoogle Scholar
  10. 10.
    D. Knoll, J. Morel, L. Margolin, M. Shashkov, Physically motivated discretization methods. Los Alamos Sci. 29, 188 (2005) Google Scholar
  11. 11.
    U. Ascher, J. Christiansen, R.D. Russell, Collocation software for boundary-value ODEs. ACM Trans. Math. Softw. 7, 209 (1981) MATHCrossRefGoogle Scholar
  12. 12.
    G. Bader, U. Ascher, A new basis implementation for a mixed order boundary value ODE solver. SIAM J. Sci. Stat. Comput. 8, 483 (1987) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    J.R. Cash, M.H. Wright, A deferred correction method for nonlinear two-point boundary value problems: implementation and numerical evaluation. SIAM J. Sci. Stat. Comput. 12, 971 (1991) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    W.H. Enright, P.H. Muir, Runge–Kutta software with defect control for boundary value ODEs. SIAM J. Sci. Comput. 17, 479 (1996) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    L.F. Shampine, P.H. Muir, H. Xu, A user-friendly Fortran BVP solver. J. Numer. Anal. Ind. Appl. Math. 1, 201 (2006) MathSciNetMATHGoogle Scholar
  16. 16.
    J.E. Flaherty, Finite element analysis. CSCI, MATH 6860 Lecture Notes, Rensselaer Polytechnic Institute, Troy, 2000 Google Scholar
  17. 17.
    C.T. Fulton, S.A. Pruess, Eigenvalue and eigenfunction asymptotics for regular Sturm–Liouville problems. J. Math. Anal. Appl. 188, 297 (1994) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Q. Kong, A. Zettl, Eigenvalues of regular Sturm–Liouville problems. J. Differ. Equ. 131, 1 (1996) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    J.D. Pryce, Numerical Solution of Sturm–Liouville Problems (Clarendon, Oxford, 1993) MATHGoogle Scholar
  20. 20.
    S. Pruess, Estimating the eigenvalues of Sturm–Liouville problems by approximating the differential equation. SIAM J. Numer. Anal. 10, 55 (1973) MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    J. Walter, Regular eigenvalue problems with eigenvalue parameter in the boundary condition. Math. Z. 133, 301 (1973) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    C.T. Fulton, Two-point boundary value problems with eigenparameter contained in the boundary conditions. Proc. R. Soc. Edinb. 77A, 293 (1977) MathSciNetGoogle Scholar
  23. 23.
    C.T. Fulton, Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions. Proc. R. Soc. Edinb. 87A, 1 (1980) MathSciNetCrossRefGoogle Scholar
  24. 24.
    D. Hinton, An expansion theorem for an eigenvalue problem with eigenvalue parameter in the boundary condition. Q. J. Math. Oxf. 2, 33 (1979) MathSciNetCrossRefGoogle Scholar
  25. 25.
    D. Hinton, Eigenfunction expansions for a singular eigenvalue problem with eigenparameter in the boundary condition. SIAM J. Math. Anal. 12, 572 (1981) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    P.A. Binding, P.J. Browne, B.A. Watson, Transformations between Sturm–Liouville problems with eigenvalue dependent and independent boundary conditions. Bull. Lond. Math. Soc. 33, 749 (2001) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    P.A. Binding, P.J. Browne, B.A. Watson, Sturm–Liouville problems with boundary conditions rationally dependent on the eigenparameter, I. Proc. Edinb. Math. Soc. 45, 631 (2002) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    P.A. Binding, P.J. Browne, B.A. Watson, Sturm–Liouville problems with boundary conditions rationally dependent on the eigenparameter, II. J. Comput. Appl. Math. 148, 147 (2002) (inverse problem) MathSciNetADSMATHCrossRefGoogle Scholar
  29. 29.
    W.J. Code, P.J. Browne, Sturm–Liouville problems with boundary conditions depending quadratically on the eigenparameter. J. Math. Anal. Appl. 309, 729 (2005) MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    M. Kac, Can one hear the shape of a drum? Am. Math. Mon. 73(4), 1 (1966) MATHCrossRefGoogle Scholar
  31. 31.
    C. Gordon, D. Webb, S. Wolpert, One cannot hear the shape of the drum. Bull. Am. Math. Soc. 27(1), 134 (1992) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    S.J. Chapman, Drums that sound the same. Am. Math. Mon. 102(2), 124 (1995) MATHCrossRefGoogle Scholar
  33. 33.
    A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems (Springer, New York, 1996) MATHGoogle Scholar
  34. 34.
    A.N. Tikhonov, V. Arsenin, Solutions of Ill-Posed Problems (Wiley, New York, 1977) MATHGoogle Scholar
  35. 35.
    A.N. Tikhonov, A.S. Leonov, A.G. Yagola, Nonlinear Ill-Posed Problems, Vols. I and II (Chapman and Hall, London, 1998) Google Scholar
  36. 36.
    C.R. Vogel, Computational Methods for Inverse Problems (SIAM, Philadelphia, 2002) MATHCrossRefGoogle Scholar
  37. 37.
    C.M. McCarthy, W. Rundell, Eigenparameter dependent inverse Sturm–Liouville problems. Numer. Funct. Anal. Optim. 24, 85 (2003) MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    M.E. Davis, Numerical Methods and Modeling for Chemical Engineers (Wiley, New York, 1984) Google Scholar
  39. 39.
    M.H. Holmes, Introduction to Numerical Methods in Differential Equations (Springer, New York, 2007) MATHCrossRefGoogle Scholar
  40. 40.
    G. Vanden Berghe, M. Van Daele, H. De Meyer, A five-diagonal finite difference method based on mixed-type interpolation for computing eigenvalues of fourth-order two-point boundary-value problems. J. Comput. Appl. Math. 41, 359 (1992) MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    D.J. Jones, Use of a shooting method to compute eigenvalues of fourth-order two-point boundary value problems. J. Comput. Appl. Math. 47, 395 (1993) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Simon Širca
    • 1
  • Martin Horvat
    • 1
  1. 1.Faculty of Mathematics and PhysicsUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations