Advertisement

Boundary-Value Problems for ODE

  • Simon Širca
  • Martin Horvat
Part of the Graduate Texts in Physics book series (GTP)

Abstract

This chapter first deals with various finite-difference methods for scalar boundary-value problems involving ordinary differential equations and for systems of such problems. The concepts of consistency, stability and convergence are introduced, as well as methods to increase the local solution precision by extrapolation. Shooting methods are offered as a clear alternative to difference methods in the case of non-linear equations and their systems. A separate section is devoted to various types of discretizations that mirror the asymptotic physics regimes of the underlying differential equation. Collocation and weighted-residual methods are presented. Several approaches to boundary-value problems with eigenvalues are attempted: finite-difference methods, shooting methods involving the Prüfer transformation, and the Pruess method. The treatment of problems in which the eigenvalues appear in the boundary conditions is also illustrated. Examples and Problems include the non-linear Gelfand–Bratu equation, diffusion and reaction in a catalytic pellet, deflection of an inhomogeneous beam, the one-dimensional Schrödinger equation, and a boundary-layer problem.

Keywords

Difference Scheme Collocation Method Collocation Point Uniform Mesh Shooting Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H.B. Keller, Numerical Methods for Two-Point Boundary-Value Problems (Blaisdell, Waltham, 1968) zbMATHGoogle Scholar
  2. 2.
    U.M. Ascher, R.M.M. Mattheij, R.D. Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations (SIAM, Philadelphia, 1995) zbMATHCrossRefGoogle Scholar
  3. 3.
    U. Ascher, R.D. Russell, Reformulation of boundary value problems into “standard form”. SIAM Rev. 23, 238 (1981) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    E. Isaacson, H.B. Keller, Analysis of Numerical Methods (Wiley, New York, 1966) zbMATHGoogle Scholar
  5. 5.
    P. Henrici, Discrete Variable Methods in Ordinary Differential Equations (Wiley, New York, 1962) zbMATHGoogle Scholar
  6. 6.
    P. Henrici, Error Propagation for Difference Methods (Wiley, New York, 1963) zbMATHGoogle Scholar
  7. 7.
    E.W. Larsen, J.E. Morel, W.F. Miller, Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes. J. Comput. Phys. 69, 283 (1987) MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    E.W. Larsen, J.E. Morel, Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes, II. J. Comput. Phys. 83, 212 (1989) MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, 10th edn. (Dover, Mineola, 1972) zbMATHGoogle Scholar
  10. 10.
    D. Knoll, J. Morel, L. Margolin, M. Shashkov, Physically motivated discretization methods. Los Alamos Sci. 29, 188 (2005) Google Scholar
  11. 11.
    U. Ascher, J. Christiansen, R.D. Russell, Collocation software for boundary-value ODEs. ACM Trans. Math. Softw. 7, 209 (1981) zbMATHCrossRefGoogle Scholar
  12. 12.
    G. Bader, U. Ascher, A new basis implementation for a mixed order boundary value ODE solver. SIAM J. Sci. Stat. Comput. 8, 483 (1987) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    J.R. Cash, M.H. Wright, A deferred correction method for nonlinear two-point boundary value problems: implementation and numerical evaluation. SIAM J. Sci. Stat. Comput. 12, 971 (1991) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    W.H. Enright, P.H. Muir, Runge–Kutta software with defect control for boundary value ODEs. SIAM J. Sci. Comput. 17, 479 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    L.F. Shampine, P.H. Muir, H. Xu, A user-friendly Fortran BVP solver. J. Numer. Anal. Ind. Appl. Math. 1, 201 (2006) MathSciNetzbMATHGoogle Scholar
  16. 16.
    J.E. Flaherty, Finite element analysis. CSCI, MATH 6860 Lecture Notes, Rensselaer Polytechnic Institute, Troy, 2000 Google Scholar
  17. 17.
    C.T. Fulton, S.A. Pruess, Eigenvalue and eigenfunction asymptotics for regular Sturm–Liouville problems. J. Math. Anal. Appl. 188, 297 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Q. Kong, A. Zettl, Eigenvalues of regular Sturm–Liouville problems. J. Differ. Equ. 131, 1 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    J.D. Pryce, Numerical Solution of Sturm–Liouville Problems (Clarendon, Oxford, 1993) zbMATHGoogle Scholar
  20. 20.
    S. Pruess, Estimating the eigenvalues of Sturm–Liouville problems by approximating the differential equation. SIAM J. Numer. Anal. 10, 55 (1973) MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 21.
    J. Walter, Regular eigenvalue problems with eigenvalue parameter in the boundary condition. Math. Z. 133, 301 (1973) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    C.T. Fulton, Two-point boundary value problems with eigenparameter contained in the boundary conditions. Proc. R. Soc. Edinb. 77A, 293 (1977) MathSciNetGoogle Scholar
  23. 23.
    C.T. Fulton, Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions. Proc. R. Soc. Edinb. 87A, 1 (1980) MathSciNetCrossRefGoogle Scholar
  24. 24.
    D. Hinton, An expansion theorem for an eigenvalue problem with eigenvalue parameter in the boundary condition. Q. J. Math. Oxf. 2, 33 (1979) MathSciNetCrossRefGoogle Scholar
  25. 25.
    D. Hinton, Eigenfunction expansions for a singular eigenvalue problem with eigenparameter in the boundary condition. SIAM J. Math. Anal. 12, 572 (1981) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    P.A. Binding, P.J. Browne, B.A. Watson, Transformations between Sturm–Liouville problems with eigenvalue dependent and independent boundary conditions. Bull. Lond. Math. Soc. 33, 749 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    P.A. Binding, P.J. Browne, B.A. Watson, Sturm–Liouville problems with boundary conditions rationally dependent on the eigenparameter, I. Proc. Edinb. Math. Soc. 45, 631 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    P.A. Binding, P.J. Browne, B.A. Watson, Sturm–Liouville problems with boundary conditions rationally dependent on the eigenparameter, II. J. Comput. Appl. Math. 148, 147 (2002) (inverse problem) MathSciNetADSzbMATHCrossRefGoogle Scholar
  29. 29.
    W.J. Code, P.J. Browne, Sturm–Liouville problems with boundary conditions depending quadratically on the eigenparameter. J. Math. Anal. Appl. 309, 729 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    M. Kac, Can one hear the shape of a drum? Am. Math. Mon. 73(4), 1 (1966) zbMATHCrossRefGoogle Scholar
  31. 31.
    C. Gordon, D. Webb, S. Wolpert, One cannot hear the shape of the drum. Bull. Am. Math. Soc. 27(1), 134 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    S.J. Chapman, Drums that sound the same. Am. Math. Mon. 102(2), 124 (1995) zbMATHCrossRefGoogle Scholar
  33. 33.
    A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems (Springer, New York, 1996) zbMATHGoogle Scholar
  34. 34.
    A.N. Tikhonov, V. Arsenin, Solutions of Ill-Posed Problems (Wiley, New York, 1977) zbMATHGoogle Scholar
  35. 35.
    A.N. Tikhonov, A.S. Leonov, A.G. Yagola, Nonlinear Ill-Posed Problems, Vols. I and II (Chapman and Hall, London, 1998) Google Scholar
  36. 36.
    C.R. Vogel, Computational Methods for Inverse Problems (SIAM, Philadelphia, 2002) zbMATHCrossRefGoogle Scholar
  37. 37.
    C.M. McCarthy, W. Rundell, Eigenparameter dependent inverse Sturm–Liouville problems. Numer. Funct. Anal. Optim. 24, 85 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    M.E. Davis, Numerical Methods and Modeling for Chemical Engineers (Wiley, New York, 1984) Google Scholar
  39. 39.
    M.H. Holmes, Introduction to Numerical Methods in Differential Equations (Springer, New York, 2007) zbMATHCrossRefGoogle Scholar
  40. 40.
    G. Vanden Berghe, M. Van Daele, H. De Meyer, A five-diagonal finite difference method based on mixed-type interpolation for computing eigenvalues of fourth-order two-point boundary-value problems. J. Comput. Appl. Math. 41, 359 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    D.J. Jones, Use of a shooting method to compute eigenvalues of fourth-order two-point boundary value problems. J. Comput. Appl. Math. 47, 395 (1993) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Simon Širca
    • 1
  • Martin Horvat
    • 1
  1. 1.Faculty of Mathematics and PhysicsUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations