Skip to main content

Part of the book series: Graduate Texts in Physics ((GTP))

  • 4744 Accesses

Abstract

Solving non-linear equations and systems of such equations is one of the daily chores of a physicist or engineer. In this chapter basic techniques for scalar equations are explained: bisection, Newton–Raphson with optional convergence improvements, the secant and Müller’s method. Vector non-linear equations are treated by Newton–Raphson and Broyden’s method, illustrated by a robot engineering example. Solving polynomial equations of a single variable is described next, along with the efficient means of counting and locating the zeros. Special attention is given to the sensitivity of zeros to perturbations. The chapter ends with a discussion on how to solve algebraic equations of several variables (frequently occurring in automated assembly of mechanical systems, robot control, coding and cryptography), for which powerful algorithms based on Gröbner bases have been developed. The Examples and Problems include Kepler’s equation, Wien’s law of black-body radiation, Heisenberg’s model in the mean-field approximation, energy levels of one-dimensional quantum-mechanical systems, fluid flow through systems of pipes, and automated assembly of three-dimensional structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. A.E. Dubinov, I.N. Galidakis, Explicit solution of the Kepler equation. Phys. Part. Nucl. Lett. 4, 213 (2007)

    Article  Google Scholar 

  2. R. Luck, J.W. Stevens, Explicit solutions for transcendental equations. SIAM Rev. 44, 227 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. G.R. Wood, The bisection method in higher dimensions. Math. Program. 55, 319 (1992)

    Article  MATH  Google Scholar 

  4. W. Baritompa, Multidimensional bisection: a dual viewpoint. Comput. Math. Appl. 27, 11 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, 3rd edn. Texts in Appl. Math., vol. 12 (Springer, Berlin, 2002)

    MATH  Google Scholar 

  6. E.D. Charles, J.B. Tatum, The convergence of Newton–Raphson iteration with Kepler’s equation. Celest. Mech. Dyn. Astron. 69, 357 (1998)

    Article  ADS  MATH  Google Scholar 

  7. B.A. Conway, An improved algorithm due to Laguerre for the solution of Kepler’s equation. Celest. Mech. 39, 199 (1986)

    Article  ADS  MATH  Google Scholar 

  8. H. Susanto, N. Karjanto, Newton’s method’s basins of attraction revisited. Appl. Comput. Math. 215, 1084 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. J.A. Ford, Improved algorithms of Illinois-type for the numerical solution of nonlinear equations. Technical report CSM-257, University of Essex (1995)

    Google Scholar 

  10. A. Ralston, H.S. Wilf, Mathematical Methods of Digital Computers, vol. 2 (Wiley, New York, 1967), Chap. 9

    Google Scholar 

  11. J.F. Traub, Iterative Methods for the Solution of Equations (Prentice-Hall, Englewood Cliffs, 1964)

    MATH  Google Scholar 

  12. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes: The Art of Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007). See also the equivalent handbooks in Fortran, Pascal and C, as well as http://www.nr.com

    MATH  Google Scholar 

  13. G. Dahlquist, Å. Björck, Numerical Methods in Scientific Computing, Vols. 1 and 2 (SIAM, Philadelphia, 2008)

    Google Scholar 

  14. J.E. Dennis Jr., R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (SIAM, Philadelphia, 1996)

    Book  MATH  Google Scholar 

  15. C.G. Broyden, A class of methods for solving nonlinear simultaneous equations. Math. Comput. 19, 577 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  16. J.J. Moré, J.A. Trangenstein, On the global convergence of Broyden’s method. Math. Comput. 30, 523 (1976)

    MATH  Google Scholar 

  17. D.M. Gay, Some convergence properties of Broyden’s method. SIAM J. Numer. Anal. 16, 623 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. C.G. Broyden, On the discovery of the “good Broyden” method. Math. Program., Ser. B 87, 209 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Li, J. Zeng, S. Zhou, Convergence of Broyden-like matrix. Appl. Math. Lett. 11, 35 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. J.M. Martínez, Practical quasi-Newton methods for solving nonlinear systems. J. Comput. Appl. Math. 124, 97 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. P. Henrici, Applied and Computational Complex Analysis, vol. 1 (Wiley, New York, 1974)

    MATH  Google Scholar 

  22. D.E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 2nd edn. (Addison-Wesley, Reading, 1980)

    Google Scholar 

  23. M. Marden, The Geometry of Zeros of a Polynomial in the Complex Variable (Am. Math. Soc., New York, 1949)

    MATH  Google Scholar 

  24. M. Fujiwara, Über die obere Schranke des absoluten Betrages der Wurzeln einer algebraischen Gleichung. Tohoku Math. J. 10, 167 (1916)

    MATH  Google Scholar 

  25. D. Kincaid, W. Cheney, Numerical Analysis. Mathematics of Scientific Computing (Brooks/Cole, Belmont, 1991)

    MATH  Google Scholar 

  26. E.B. Vinberg, A Course in Algebra (Am. Math. Soc., Providence, 2003)

    MATH  Google Scholar 

  27. L.N. Trefethen, D. Bau, Numerical Linear Algebra (SIAM, Philadelphia, 1997)

    Book  MATH  Google Scholar 

  28. M.A. Jenkins, J.F. Traub, A three-stage variable-shift iteration for polynomial zeros and its relation to generalized Rayleigh iteration. Numer. Math. 14, 252 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  29. M.A. Jenkins, J.F. Traub, A three-stage algorithm for real polynomials using quadratic iteration. SIAM J. Numer. Anal. 7, 545 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  30. E. Isaacson, H.B. Keller, Analysis of Numerical Methods (Wiley, New York, 1966)

    MATH  Google Scholar 

  31. H.J. Stetter, Numerical Polynomial Algebra (SIAM, Philadelphia, 2004)

    Book  MATH  Google Scholar 

  32. E.J. Haug, Computer Aided Kinematics and Dynamics of Mechanical Systems, vol. 1 (Allyn and Bacon, Boston, 1989)

    Google Scholar 

  33. M. Sala, T. Mora, L. Perret, S. Sakata, C. Traverso (eds.), Gröbner Bases, Coding, and Cryptography (Springer, Berlin, 2009)

    MATH  Google Scholar 

  34. J. Gago-Vargas et al., Sudokus and Gröbner bases: not only a divertimento, in CASC 2006, ed. by V.G. Ganzha, E.W. Mayr, E.V. Vorozhtsov. Lecture Notes in Computer Science, vol. 4194 (Springer, Berlin, 2006), p. 155

    Google Scholar 

  35. V.R. Romanovski, D.S. Shafer, The Center and Cyclicity Problems: A Computational Algebra Approach (Birkhäuser, Boston, 2009)

    MATH  Google Scholar 

  36. W. Adams, P. Loustaunau, An Introduction to Gröbner Bases. Graduate Studies in Mathematics, vol. 3 (Am. Math. Soc., Providence, 1994)

    MATH  Google Scholar 

  37. D. Cox, J. Little, D. O’Shea, Ideals, Varieties, and Algorithms, 3rd edn. (Springer, Berlin, 2007)

    Book  MATH  Google Scholar 

  38. E. Roanes-Lozano, E. Roanes-Macías, L.M. Laita, Some applications of Gröbner bases. Comput. Sci. Eng. May/Jun, 56 (2004)

    Article  Google Scholar 

  39. E. Roanes-Lozano, E. Roanes-Macías, L.M. Laita, The geometry of algebraic systems and their exact solving using Gröbner bases. Comput. Sci. Eng. March/April, 76 (2004)

    Article  Google Scholar 

  40. S. Mac Lane, G. Birkhoff, Algebra, 3rd edn. (Am. Math. Soc., Providence, 1999)

    Google Scholar 

  41. V.R. Romanovski, M. Prešern, An approach to solving systems of polynomials via modular arithmetics with applications. J. Comput. Appl. Math. 236, 196 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. B. Buchberger, An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. J. Symb. Comput. 41, 475 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. T. Stegers, Faugère’s F5 algorithm revisited. Diploma thesis, Technische Universität Darmstadt (2005/2007)

    Google Scholar 

  44. J.C. Faugère, A new efficient algorithm for computing Gröbner bases without reduction to zero (F 5), in Proc. International Symposium on Symbolic and Algebraic Computation, Lille, France (2002), p. 75

    Google Scholar 

  45. L. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1968)

    Google Scholar 

  46. F. Chapeau-Blondeau, A. Monir, Numerical evaluation of the Lambert W-function and application to generation of generalized Gaussian noise with exponent 1/2. IEEE Trans. Signal Process. 50, 2160 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  47. H. Gould, J. Tobochnik, Statistical and Thermal Physics: With Computer Applications (Princeton University Press, Princeton, 2010)

    MATH  Google Scholar 

  48. K. Meintjes, A.P. Morgan, Chemical equilibrium systems as numerical test problems. ACM Trans. Math. Softw. 16, 143 (1990)

    Article  MATH  Google Scholar 

  49. O. Reynolds, An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous and of the law of resistance in parallel channels. Proc. R. Soc. Lond. 35, 84 (1883)

    Article  Google Scholar 

  50. H. Faisst, B. Eckhardt, Sensitive dependence on initial conditions in transition to turbulence in pipe flow. J. Fluid Mech. 504, 343 (2004)

    Article  ADS  MATH  Google Scholar 

  51. B.E. Larock, R.W. Jeppson, G.Z. Watters, Hydraulics of Pipeline Systems (CRC Press, Boca Raton, 2002)

    Google Scholar 

  52. H. Goldstein, Classical Mechanics, 2nd edn. (Addison-Wesley, Reading, 1980)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Širca, S., Horvat, M. (2012). Solving Non-linear Equations. In: Computational Methods for Physicists. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32478-9_2

Download citation

Publish with us

Policies and ethics