Solving Non-linear Equations

  • Simon Širca
  • Martin Horvat
Part of the Graduate Texts in Physics book series (GTP)


Solving non-linear equations and systems of such equations is one of the daily chores of a physicist or engineer. In this chapter basic techniques for scalar equations are explained: bisection, Newton–Raphson with optional convergence improvements, the secant and Müller’s method. Vector non-linear equations are treated by Newton–Raphson and Broyden’s method, illustrated by a robot engineering example. Solving polynomial equations of a single variable is described next, along with the efficient means of counting and locating the zeros. Special attention is given to the sensitivity of zeros to perturbations. The chapter ends with a discussion on how to solve algebraic equations of several variables (frequently occurring in automated assembly of mechanical systems, robot control, coding and cryptography), for which powerful algorithms based on Gröbner bases have been developed. The Examples and Problems include Kepler’s equation, Wien’s law of black-body radiation, Heisenberg’s model in the mean-field approximation, energy levels of one-dimensional quantum-mechanical systems, fluid flow through systems of pipes, and automated assembly of three-dimensional structures.


Jacobi Matrix Real Zero Raphson Method Quadratic Convergence Secant Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A.E. Dubinov, I.N. Galidakis, Explicit solution of the Kepler equation. Phys. Part. Nucl. Lett. 4, 213 (2007) CrossRefGoogle Scholar
  2. 2.
    R. Luck, J.W. Stevens, Explicit solutions for transcendental equations. SIAM Rev. 44, 227 (2002) MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    G.R. Wood, The bisection method in higher dimensions. Math. Program. 55, 319 (1992) zbMATHCrossRefGoogle Scholar
  4. 4.
    W. Baritompa, Multidimensional bisection: a dual viewpoint. Comput. Math. Appl. 27, 11 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, 3rd edn. Texts in Appl. Math., vol. 12 (Springer, Berlin, 2002) zbMATHGoogle Scholar
  6. 6.
    E.D. Charles, J.B. Tatum, The convergence of Newton–Raphson iteration with Kepler’s equation. Celest. Mech. Dyn. Astron. 69, 357 (1998) ADSzbMATHCrossRefGoogle Scholar
  7. 7.
    B.A. Conway, An improved algorithm due to Laguerre for the solution of Kepler’s equation. Celest. Mech. 39, 199 (1986) ADSzbMATHCrossRefGoogle Scholar
  8. 8.
    H. Susanto, N. Karjanto, Newton’s method’s basins of attraction revisited. Appl. Comput. Math. 215, 1084 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    J.A. Ford, Improved algorithms of Illinois-type for the numerical solution of nonlinear equations. Technical report CSM-257, University of Essex (1995) Google Scholar
  10. 10.
    A. Ralston, H.S. Wilf, Mathematical Methods of Digital Computers, vol. 2 (Wiley, New York, 1967), Chap. 9 Google Scholar
  11. 11.
    J.F. Traub, Iterative Methods for the Solution of Equations (Prentice-Hall, Englewood Cliffs, 1964) zbMATHGoogle Scholar
  12. 12.
    W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes: The Art of Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007). See also the equivalent handbooks in Fortran, Pascal and C, as well as zbMATHGoogle Scholar
  13. 13.
    G. Dahlquist, Å. Björck, Numerical Methods in Scientific Computing, Vols. 1 and 2 (SIAM, Philadelphia, 2008) Google Scholar
  14. 14.
    J.E. Dennis Jr., R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (SIAM, Philadelphia, 1996) zbMATHCrossRefGoogle Scholar
  15. 15.
    C.G. Broyden, A class of methods for solving nonlinear simultaneous equations. Math. Comput. 19, 577 (1965) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    J.J. Moré, J.A. Trangenstein, On the global convergence of Broyden’s method. Math. Comput. 30, 523 (1976) zbMATHGoogle Scholar
  17. 17.
    D.M. Gay, Some convergence properties of Broyden’s method. SIAM J. Numer. Anal. 16, 623 (1979) MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 18.
    C.G. Broyden, On the discovery of the “good Broyden” method. Math. Program., Ser. B 87, 209 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    D. Li, J. Zeng, S. Zhou, Convergence of Broyden-like matrix. Appl. Math. Lett. 11, 35 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    J.M. Martínez, Practical quasi-Newton methods for solving nonlinear systems. J. Comput. Appl. Math. 124, 97 (2000) MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 21.
    P. Henrici, Applied and Computational Complex Analysis, vol. 1 (Wiley, New York, 1974) zbMATHGoogle Scholar
  22. 22.
    D.E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 2nd edn. (Addison-Wesley, Reading, 1980) Google Scholar
  23. 23.
    M. Marden, The Geometry of Zeros of a Polynomial in the Complex Variable (Am. Math. Soc., New York, 1949) zbMATHGoogle Scholar
  24. 24.
    M. Fujiwara, Über die obere Schranke des absoluten Betrages der Wurzeln einer algebraischen Gleichung. Tohoku Math. J. 10, 167 (1916) zbMATHGoogle Scholar
  25. 25.
    D. Kincaid, W. Cheney, Numerical Analysis. Mathematics of Scientific Computing (Brooks/Cole, Belmont, 1991) zbMATHGoogle Scholar
  26. 26.
    E.B. Vinberg, A Course in Algebra (Am. Math. Soc., Providence, 2003) zbMATHGoogle Scholar
  27. 27.
    L.N. Trefethen, D. Bau, Numerical Linear Algebra (SIAM, Philadelphia, 1997) zbMATHCrossRefGoogle Scholar
  28. 28.
    M.A. Jenkins, J.F. Traub, A three-stage variable-shift iteration for polynomial zeros and its relation to generalized Rayleigh iteration. Numer. Math. 14, 252 (1970) MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    M.A. Jenkins, J.F. Traub, A three-stage algorithm for real polynomials using quadratic iteration. SIAM J. Numer. Anal. 7, 545 (1970) MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    E. Isaacson, H.B. Keller, Analysis of Numerical Methods (Wiley, New York, 1966) zbMATHGoogle Scholar
  31. 31.
    H.J. Stetter, Numerical Polynomial Algebra (SIAM, Philadelphia, 2004) zbMATHCrossRefGoogle Scholar
  32. 32.
    E.J. Haug, Computer Aided Kinematics and Dynamics of Mechanical Systems, vol. 1 (Allyn and Bacon, Boston, 1989) Google Scholar
  33. 33.
    M. Sala, T. Mora, L. Perret, S. Sakata, C. Traverso (eds.), Gröbner Bases, Coding, and Cryptography (Springer, Berlin, 2009) zbMATHGoogle Scholar
  34. 34.
    J. Gago-Vargas et al., Sudokus and Gröbner bases: not only a divertimento, in CASC 2006, ed. by V.G. Ganzha, E.W. Mayr, E.V. Vorozhtsov. Lecture Notes in Computer Science, vol. 4194 (Springer, Berlin, 2006), p. 155 Google Scholar
  35. 35.
    V.R. Romanovski, D.S. Shafer, The Center and Cyclicity Problems: A Computational Algebra Approach (Birkhäuser, Boston, 2009) zbMATHGoogle Scholar
  36. 36.
    W. Adams, P. Loustaunau, An Introduction to Gröbner Bases. Graduate Studies in Mathematics, vol. 3 (Am. Math. Soc., Providence, 1994) zbMATHGoogle Scholar
  37. 37.
    D. Cox, J. Little, D. O’Shea, Ideals, Varieties, and Algorithms, 3rd edn. (Springer, Berlin, 2007) zbMATHCrossRefGoogle Scholar
  38. 38.
    E. Roanes-Lozano, E. Roanes-Macías, L.M. Laita, Some applications of Gröbner bases. Comput. Sci. Eng. May/Jun, 56 (2004) CrossRefGoogle Scholar
  39. 39.
    E. Roanes-Lozano, E. Roanes-Macías, L.M. Laita, The geometry of algebraic systems and their exact solving using Gröbner bases. Comput. Sci. Eng. March/April, 76 (2004) CrossRefGoogle Scholar
  40. 40.
    S. Mac Lane, G. Birkhoff, Algebra, 3rd edn. (Am. Math. Soc., Providence, 1999) Google Scholar
  41. 41.
    V.R. Romanovski, M. Prešern, An approach to solving systems of polynomials via modular arithmetics with applications. J. Comput. Appl. Math. 236, 196 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    B. Buchberger, An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. J. Symb. Comput. 41, 475 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    T. Stegers, Faugère’s F5 algorithm revisited. Diploma thesis, Technische Universität Darmstadt (2005/2007) Google Scholar
  44. 44.
    J.C. Faugère, A new efficient algorithm for computing Gröbner bases without reduction to zero (F 5), in Proc. International Symposium on Symbolic and Algebraic Computation, Lille, France (2002), p. 75 Google Scholar
  45. 45.
    L. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1968) Google Scholar
  46. 46.
    F. Chapeau-Blondeau, A. Monir, Numerical evaluation of the Lambert W-function and application to generation of generalized Gaussian noise with exponent 1/2. IEEE Trans. Signal Process. 50, 2160 (2002) MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    H. Gould, J. Tobochnik, Statistical and Thermal Physics: With Computer Applications (Princeton University Press, Princeton, 2010) zbMATHGoogle Scholar
  48. 48.
    K. Meintjes, A.P. Morgan, Chemical equilibrium systems as numerical test problems. ACM Trans. Math. Softw. 16, 143 (1990) zbMATHCrossRefGoogle Scholar
  49. 49.
    O. Reynolds, An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous and of the law of resistance in parallel channels. Proc. R. Soc. Lond. 35, 84 (1883) CrossRefGoogle Scholar
  50. 50.
    H. Faisst, B. Eckhardt, Sensitive dependence on initial conditions in transition to turbulence in pipe flow. J. Fluid Mech. 504, 343 (2004) ADSzbMATHCrossRefGoogle Scholar
  51. 51.
    B.E. Larock, R.W. Jeppson, G.Z. Watters, Hydraulics of Pipeline Systems (CRC Press, Boca Raton, 2002) Google Scholar
  52. 52.
    H. Goldstein, Classical Mechanics, 2nd edn. (Addison-Wesley, Reading, 1980) zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Simon Širca
    • 1
  • Martin Horvat
    • 1
  1. 1.Faculty of Mathematics and PhysicsUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations