Lasing in Amorphous Nanophotonic Structures

  • Hui Cao
  • Heeso Noh
Part of the Nano-Optics and Nanophotonics book series (NON)


We review the recent experimental and numerical studies on lasing in photonic nanostructures with short-range order in this chapter. Despite the lack of long-range order, photonic bandgaps can be formed in such structures, and they are isotropic. Our numerical studies show that the photonic bandgaps depends not only on the spatial range of geometric order, but also on the structural topology. The photonic bandedge modes may be spatially localized, in contrast to those of photonic crystals. Lasing has been realized experimentally in semiconductor nanostructures with short-range order. The nature of lasing modes are illustrated, and the lasing characteristic can be controlled by the short-range order.


Lasing Mode Transverse Electric Defect Mode Dielectric Sphere Refractive Index Contrast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank our co-workers who have contributed to the studies presented in this chapter. Dr. Jin-Kyu Yang and Seng-Fatt Liew performed experimental and numerical studies on PBG and lasing in photonic nanostructures with short-range order. Prof. Corey O’Hern and Carl Schreck developed the numerical methods to generate the amorphous nanostructures. Prof. Glenn Solomon grew the semiconductor samples by molecular beam epitaxy, Dr. Michael Rooks worked with us in fabricating the nanostructures with the electron-beam lithography, and Dr. Mikhail Guy assisted us in the computer simulation. We acknowledge Professors Eric Dufresne, Richard Prum, A. Douglas Stone, Simon Mochrie, and Dr. Vinodkumar Saranathan for many stimulating discussions and the collaborative studies on coloration of photonic amorphous structures in nature. Our research program has been sponsored by the National Science Foundation, and the Materials Research and Engineering Center at Yale University.


  1. 1.
    S. Noda, T. Baba (eds.), Roadmap on Photonic Crystals (Kluwer Academic, Dordrecht, 2003) Google Scholar
  2. 2.
    M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R.E. Slusher, J.D. Joannopoulos, O. Nalamasu, Laser action from two-dimensional distributed feedback in photonic crystals. Appl. Phys. Lett. 74(1), 7–9 (1999) ADSCrossRefGoogle Scholar
  3. 3.
    O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus, I. Kim, Two-dimensional photonic band-gap defect mode laser. Science 284(5421), 1819–1821 (1999) CrossRefGoogle Scholar
  4. 4.
    H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, Y.-H. Lee, Electrically driven single-cell photonic crystal laser. Science 305(5689), 1444–1447 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    M. Notomi, H. Suzuki, T. Tamamura, K. Edagawa, Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a penrose lattice. Phys. Rev. Lett. 92(12), 123906 (2004) ADSCrossRefGoogle Scholar
  6. 6.
    K. Nozaki, T. Baba, Quasiperiodic photonic crystal microcavity lasers. Appl. Phys. Lett. 84(24), 4875–4877 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    S.-K. Kim, J.-H. Lee, S.-H. Kim, I.-K. Hwang, Y.-H. Lee, S.-B. Kim, Photonic quasicrystal single-cell cavity mode. Appl. Phys. Lett. 86(3), 031101 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    K. Nozaki, T. Baba, Lasing characteristics of 12-fold symmetric quasi-periodic photonic crystal slab nanolasers. Jpn. J. Appl. Phys. 45(8A), 6087–6090 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    X. Xu, H. Chen, D. Zhang, Enhancement of stimulated emission in 12-fold symmetric quasi-crystals. Appl. Phys. B 89, 29–34 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    C. Jin, X. Meng, B. Cheng, Z. Li, D. Zhang, Photonic gap in amorphous photonic materials. Phys. Rev. B 63(19), 195107 (2001) ADSCrossRefGoogle Scholar
  11. 11.
    J. Ballato, J. Dimaio, A. James, E. Gulliver, Photonic band engineering through tailored microstructural order. Appl. Phys. Lett. 75(11), 1497–1499 (1999) ADSCrossRefGoogle Scholar
  12. 12.
    C. Rockstuhl, U. Peschel, F. Lederer, Correlation between single-cylinder properties and bandgap formation in photonic structures. Opt. Lett. 31(11), 1741–1743 (2006) ADSCrossRefGoogle Scholar
  13. 13.
    Y. Wang, S. Jian, Band-gap engineering of amorphous photonic materials. Phys. Lett. A 352(6), 550–553 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    C. Rockstuhl, F. Lederer, Suppression of the local density of states in a medium made of randomly arranged dielectric spheres. Phys. Rev. B 79(13), 132202 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    P.D. García, R. Sapienza, Á. Blanco, C. López, Photonic glass: a novel random material for light. Adv. Mater. 19(18), 2597–2602 (2007) CrossRefGoogle Scholar
  16. 16.
    K. Edagawa, S. Kanoko, M. Notomi, Photonic amorphous diamond structure with a 3D photonic band gap. Phys. Rev. Lett. 100(1), 013901 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    M. Florescu, S. Torquato, P.J. Steinhardt, Designer disordered materials with large, complete photonic band gaps. Proc. Natl. Acad. Sci. 106(49), 20658–20663 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    M. Rechtsman, A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, M. Segev, Amorphous photonic lattices: band gaps, effective mass, and suppressed transport. Phys. Rev. Lett. 106, 193904 (2011) ADSCrossRefGoogle Scholar
  19. 19.
    J.-K. Yang, C. Schreck, H. Noh, S.-F. Liew, M.I. Guy, C.S. O’Hern, H. Cao, Photonic-band-gap effects in two-dimensional polycrystalline and amorphous structures. Phys. Rev. A 82(5), 053838 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    H. Noh, J.-K. Yang, S.F. Liew, M.J. Rooks, G.S. Solomon, H. Cao, Control of lasing in biomimetic structures with short-range order. Phys. Rev. Lett. 106, 183901 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    J.-K. Yang, H. Noh, S.F. Liew, M.J. Rooks, G.S. Solomon, H. Cao, Lasing modes in polycrystalline and amorphous photonic structures. Phys. Rev. A 84, 033820 (2011) ADSCrossRefGoogle Scholar
  22. 22.
    P. Vukusic, R.J. Sambles, Photonic structures in biology. Nature 424(6950), 852–855 (2003) ADSCrossRefGoogle Scholar
  23. 23.
    S. Kinoshita, S. Yoshioka, Structural colors in nature: the role of regularity and irregularity in the structure. ChemPhysChem 6(8), 1442–1459 (2005) CrossRefGoogle Scholar
  24. 24.
    R.O. Prum, Anatomy, physics, and evolution of structural colors, in Bird Coloration, vol. 1 (Harvard University Press, Cambridge, 2006), pp. 295–353 Google Scholar
  25. 25.
    P. Simonis, J.P. Vigneron, Structural color produced by a three-dimensional photonic polycrystal in the scales of a longhorn beetle: Pseudomyagrus waterhousei (coleoptera: Cerambicidae). Phys. Rev. E 83(1), 011908 (2011) ADSCrossRefGoogle Scholar
  26. 26.
    K. Kertész, Z. Bálint, Z. Vértesy, G.I. Márk, V. Lousse, J.P. Vigneron, M. Rassart, L.P. Biró, Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus. Phys. Rev. E 74, 021922 (2006) ADSCrossRefGoogle Scholar
  27. 27.
    E.R. Dufresne, H. Noh, V. Saranathan, S.G.J. Mochrie, H. Cao, R.O. Prum, Self-assembly of amorphous biophotonic nanostructures by phase separation. Soft Matter 5(9), 1792 (2009) ADSCrossRefGoogle Scholar
  28. 28.
    H. Noh, S.F. Liew, V. Saranathan, S.G.J. Mochrie, R.O. Prum, E.R. Dufresne, H. Cao, How noniridescent colors are generated by quasi-ordered structures of bird feathers. Adv. Mater. 22(26–27), 2871–2880 (2010) CrossRefGoogle Scholar
  29. 29.
    L.F. Rojas-Ochoa, J.M. Mendez-Alcaraz, J.J. Sáenz, P. Schurtenberger, F. Scheffold, Photonic properties of strongly correlated colloidal liquids. Phys. Rev. Lett. 93(7), 073903 (2004) ADSCrossRefGoogle Scholar
  30. 30.
    A. Derode, V. Mamou, A. Tourin, Influence of correlations between scatterers on the attenuation of the coherent wave in a random medium. Phys. Rev. E 74, 036606 (2006) ADSCrossRefGoogle Scholar
  31. 31.
    M. Reufer, L.F. Rojas-Ochoa, S. Eiden, J.J. Sáenz, F. Scheffold, Transport of light in amorphous photonic materials. Appl. Phys. Lett. 91(17), 171904 (2007) ADSCrossRefGoogle Scholar
  32. 32.
    Y. Takeoka, M. Honda, T. Seki, M. Ishii, H. Nakamura, Structural colored liquid membrane without angle dependence. ACS Appl. Mater. Interfaces 1(5), 982–986 (2009) CrossRefGoogle Scholar
  33. 33.
    G.-J. Gao, J. Bławzdziewicz, C.S. O’Hern, Frequency distribution of mechanically stable disk packings. Phys. Rev. E 74, 061304 (2006) ADSCrossRefGoogle Scholar
  34. 34.
    J.Q. Broughton, G.H. Gilmer, J.D. Weeks, Molecular-dynamics study of melting in two dimensions. inverse-twelfth-power interaction. Phys. Rev. B 25, 4651–4669 (1982) ADSCrossRefGoogle Scholar
  35. 35.
    P.J. Steinhardt, D.R. Nelson, M. Ronchetti, Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784–805 (1983) ADSCrossRefGoogle Scholar
  36. 36.
    C.T. Chan, Q.L. Yu, K.M. Ho, Order-N spectral method for electromagnetic waves. Phys. Rev. B 51, 16635–16642 (1995) ADSCrossRefGoogle Scholar
  37. 37.
    E. Lidorikis, M.M. Sigalas, E.N. Economou, C.M. Soukoulis, Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials. Phys. Rev. B 61, 13458–13464 (2000) ADSCrossRefGoogle Scholar
  38. 38.
    G. Pompe, T. Rappen, M. Wehner, F. Knop, M. Wegener, Transient response of a short-cavity semiconductor laser. Phys. Status Solidi (b) 188(1), 175–180 (1995) ADSCrossRefGoogle Scholar
  39. 39.
    F. Jahnke, S.W. Koch, Many-body theory for semiconductor microcavity lasers. Phys. Rev. A 52, 1712–1727 (1995) ADSCrossRefGoogle Scholar
  40. 40.
    C. Vanneste, P. Sebbah, Complexity of two-dimensional quasimodes at the transition from weak scattering to Anderson localization. Phys. Rev. A 79, 041802 (2009) ADSCrossRefGoogle Scholar
  41. 41.
    J.B. Pendry, Quasi-extended electron states in strongly disordered systems. J. Phys. C 20(5), 733 (1987) ADSCrossRefGoogle Scholar
  42. 42.
    S.G. Johnson, J.D. Joannopoulos, Block-iterative frequency-domain methods for maxwell’s equations in a planewave basis. Opt. Express 8(3), 173–190 (2001) ADSCrossRefGoogle Scholar
  43. 43.
    X. Wu, J. Andreasen, H. Cao, A. Yamilov, Effect of local pumping on random laser modes in one dimension. J. Opt. Soc. Am. B 24(10), A26–A33 (2007) ADSCrossRefGoogle Scholar
  44. 44.
    J. Andreasen, H. Cao, Creation of new lasing modes with spatially nonuniform gain. Opt. Lett. 34(22), 3586–3588 (2009) CrossRefGoogle Scholar
  45. 45.
    J. Andreasen, C. Vanneste, L. Ge, H. Cao, Effects of spatially nonuniform gain on lasing modes in weakly scattering random systems. Phys. Rev. A 81, 043818 (2010) ADSCrossRefGoogle Scholar
  46. 46.
    S.F. Liew, J. Forster, H. Noh, C.F. Schreck, V. Saranathan, X. Lu, L. Yang, R.O. Prum, C.S. O’Hern, E.R. Dufresne, H. Cao, Short-range order and near-field effects on optical scattering and structural coloration. Opt. Express 19(9), 8208–8217 (2011) ADSCrossRefGoogle Scholar
  47. 47.
    S. Fraden, G. Maret, Multiple light scattering from concentrated, interacting suspensions. Phys. Rev. Lett. 65(4), 512–515 (1990) ADSCrossRefGoogle Scholar
  48. 48.
    S. Imagawa, K. Edagawa, K. Morita, T. Niino, Y. Kagawa, M. Notomi, Photonic band-gap formation, light diffusion, and localization in photonic amorphous diamond structures. Phys. Rev. B 82(11), 115116 (2010) ADSCrossRefGoogle Scholar
  49. 49.
    H. Noh, J.-K. Yang, S.F. Liew, M.J. Rooks, G.S. Solomon, H. Cao, Photonic network laser. Opt. Lett. 36(18), 3560–3562 (2011) CrossRefGoogle Scholar
  50. 50.
    H. Miyazaki, M. Hase, H.T. Miyazaki, Y. Kurokawa, N. Shinya, Photonic material for designing arbitrarily shaped waveguides in two dimensions. Phys. Rev. B 67, 235109 (2003) ADSCrossRefGoogle Scholar
  51. 51.
    E.N. Economou, M.M. Sigalas, Classical wave propagation in periodic structures: cermet versus network topology. Phys. Rev. B 48, 13434–13438 (1993) ADSCrossRefGoogle Scholar
  52. 52.
    R.D. Meade, A.M. Rappe, K.D. Brommer, J.D. Joannopoulos, Nature of the photonic band gap: some insights from a field analysis. J. Opt. Soc. Am. B 10(2), 328–332 (1993) ADSCrossRefGoogle Scholar
  53. 53.
    G.T. Barkema, N. Mousseau, High-quality continuous random networks. Phys. Rev. B 62, 4985–4990 (2000) ADSCrossRefGoogle Scholar
  54. 54.
    P.D. García, R. Sapienza, C. López, Photonic glasses: a step beyond white paint. Adv. Mater. 22(1), 12–19 (2010) CrossRefGoogle Scholar
  55. 55.
    B.Q. Dong, X.H. Liu, T.R. Zhan, L.P. Jiang, H.W. Yin, F. Liu, J. Zi, Structural coloration and photonic pseudogap in natural random close-packing photonic structures. Opt. Express 18(14), 14430–14438 (2010) ADSCrossRefGoogle Scholar
  56. 56.
    C.S. O’Hern, L.E. Silbert, A.J. Liu, S.R. Nagel, Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys. Rev. E 68, 011306 (2003) ADSCrossRefGoogle Scholar
  57. 57.
    O. Sigmund, K. Hougaard, Geometric properties of optimal photonic crystals. Phys. Rev. Lett. 100, 153904 (2008) ADSCrossRefGoogle Scholar
  58. 58.
    S.F. Liew, J.-K. Yang, H. Noh, C.F. Schreck, E.R. Dufresne, C.S. O’Hern, H. Cao, Photonic band gaps in three-dimensional network structures with short-range order. Phys. Rev. A 84, 063818 (2011) ADSCrossRefGoogle Scholar
  59. 59.
    P.-L. Chau, A.J. Hardwick, A new order parameter for tetrahedral configurations. Mol. Phys. 93(3), 511–518 (1998) ADSCrossRefGoogle Scholar
  60. 60.
    J.D. Forster, H. Noh, S.F. Liew, V. Saranathan, C.F. Schreck, L. Yang, J.-G. Park, R.O. Prum, S.G.J. Mochrie, C.S. O’Hern, H. Cao, E.R. Dufresne, Biomimetic isotropic nanostructures for structural coloration. Adv. Mater. 22(26–27), 2939–2944 (2010) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Applied PhysicsYale UniversityNew HavenUSA
  2. 2.Department of Nano and Electronic PhysicsKookmin UniversitySeoulKorea

Personalised recommendations