Advertisement

Electrodynamic Theory of Three-Dimensional Metamaterials of Hierarchically Organized Nanoparticles

  • Vassilios Yannopapas
  • Alexandros G. Vanakaras
  • Demetri J. Photinos
Part of the Nano-Optics and Nanophotonics book series (NON)

Abstract

To date, the most promising candidate structures for exhibiting photo-induced magnetism and negative refractive index in the optical regime are the so called Mie resonance-based metamaterials which consist of scatterers of simple geometrical shape, e.g., spherical or cylindrical, and are made of a high-index material. When such a structure is illuminated by an electromagnetic wave of frequency around the Mie resonance of a single scatterer, strong polarization currents are generated within the surface of the scatterers resulting in a macroscopic magnetization of the metamaterial. Due to the lack of naturally occurring materials with high refractive index in the optical regime, one can envisage a metamaterial which consists of meta-atoms that are clusters of metallic nanoparticles wherein strong polarization currents can also be induced under illumination. These type of metamaterials are hierarchically organized as they possess two length scales: the inter-particle distance within the cluster and the inter-cluster separation within the metamaterial. The nanoparticle clusters can be formed by direct or template-assisted self-organization and are generally amorphous due to the random positioning of the nanoparticles in air or within a cavity. The amorphous arrangement of such strongly scattering objects constitutes a major challenge for the field of theoretical and computational nanophotonics. In order to tackle this computational problem in the framework of metamaterials, we adopt a hierarchical theoretical strategy in proportion to the hierarchical organization of such structures. To this end, we develop a layer-multiple-scattering formalism for electromagnetic waves in order to model the optical response of metamaterials formed as collections of cavities filled by amorphous clusters of hierarchically organized spherical nanoparticles. It is based on a three-stage process where we take fully into account all the multiple-scattering processes experienced by photons: (a) among the particles of the cluster inside the cavity, (b) between the cluster and the cavity and (c) among the cavities (containing the clusters) within the metamaterial. We demonstrate the applicability of the method to the case of a silica-inverted opal whose voids contain clusters of gold nanoparticles. We find, in particular, such a metamaterial acts as a super absorber over a wide frequency range, from 2–4 eV.

Keywords

Negative Refractive Index Spherical Scatterer Optical Regime Surface Brillouin Zone Amorphous Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The research leading to these results has received funding from the European Union’s Seven Framework Programme (FP7/2007-2013) under Grant Agreement No. 228455-NANOGOLD (Self-organized nanomaterials for tailored optical and electrical properties).

References

  1. 1.
    J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Microw. Theory 47, 2075 (1999) CrossRefGoogle Scholar
  2. 2.
    J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000) ADSCrossRefGoogle Scholar
  3. 3.
    M.C.K. Wiltshire, J.B. Pendry, I.R. Young, D.J. Larkman, D.J. Gilderdale, J.V. Hajnal, Science 291, 849 (2001) ADSCrossRefGoogle Scholar
  4. 4.
    D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Science 314, 5801 (2006) CrossRefGoogle Scholar
  5. 5.
    N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    L.V. Panina, A.N. Grigorenko, D.P. Makhnovskiy, Phys. Rev. B 66, 155411 (2002) ADSCrossRefGoogle Scholar
  7. 7.
    T.J. Yen et al., Science 303, 1494 (2004) ADSCrossRefGoogle Scholar
  8. 8.
    T.J. Yen et al., Science 303, 1494 (2004) ADSCrossRefGoogle Scholar
  9. 9.
    V.M. Shalaev et al., Opt. Lett. 30, 3356 (2005) ADSCrossRefGoogle Scholar
  10. 10.
    S. Linden et al., Science 306, 1351 (2004) ADSCrossRefGoogle Scholar
  11. 11.
    C.M. Soukoulis, S. Linden, M. Wegener, Science 315, 788 (2007) CrossRefGoogle Scholar
  12. 12.
    V.M. Shalaev, Nat. Photonics 1, 41 (2007) ADSCrossRefGoogle Scholar
  13. 13.
    N. Liu et al., Adv. Mater. 19, 3628 (2007) CrossRefGoogle Scholar
  14. 14.
    N. Liu et al., Nat. Mater. 7, 31 (2008) ADSCrossRefGoogle Scholar
  15. 15.
    N. Liu, H. Liu, S. Zhu, H. Giessen, Nat. Photonics 3, 157 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001) ADSCrossRefGoogle Scholar
  17. 17.
    C.G. Parazzoli, R.B. Greegor, K. Li, B.E.C. Koltenbah, M. Tanielian, Phys. Rev. Lett. 90, 107401 (2003) ADSCrossRefGoogle Scholar
  18. 18.
    A.A. Houck, J.B. Brock, I.L. Chuang, Phys. Rev. Lett. 90, 137401 (2003) ADSCrossRefGoogle Scholar
  19. 19.
    S. O’Brien, J.B. Pendry, J. Phys. Condens. Matter 14, 4035 (2002) ADSCrossRefGoogle Scholar
  20. 20.
    K.C. Huang, M.L. Povinelli, J.D. Joannopoulos, Appl. Phys. Lett. 85, 543 (2004) ADSCrossRefGoogle Scholar
  21. 21.
    C.L. Holloway, E.F. Kuester, J. Baker-Jarvis, P. Kabos, IEEE Trans. Antennas Propag. 51, 2596 (2003) ADSCrossRefGoogle Scholar
  22. 22.
    V. Yannopapas, A. Moroz, J. Phys. Condens. Matter 17, 3717 (2005) ADSCrossRefGoogle Scholar
  23. 23.
    M.S. Wheeler, J.S. Aitchison, M. Mojahedi, Phys. Rev. B 72, 193103 (2005) ADSCrossRefGoogle Scholar
  24. 24.
    M.S. Wheeler, J.S. Aitchison, M. Mojahedi, Phys. Rev. B 73, 045105 (2006) ADSCrossRefGoogle Scholar
  25. 25.
    L. Jylhä, I. Kolmakov, S. Maslovski, S. Tretyakov, J. Appl. Phys. 99, 043102 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    T.G. MacKay, A. Lakhtakia, J. Appl. Phys. 100, 063533 (2006) ADSCrossRefGoogle Scholar
  27. 27.
    V. Yannopapas, N.V. Vitanov, Phys. Rev. B 74, 193304 (2006) ADSCrossRefGoogle Scholar
  28. 28.
    V. Yannopapas, Phys. Rev. B 75, 035112 (2007) ADSCrossRefGoogle Scholar
  29. 29.
    A.G. Kussow, A. Akyurtlu, A. Semichaevsky, N. Angkawisittpan, Phys. Rev. B 76, 195123 (2007) ADSCrossRefGoogle Scholar
  30. 30.
    C.W. Qiu, L. Gao, J. Opt. Soc. Am. B 25, 1728 (2008) ADSCrossRefGoogle Scholar
  31. 31.
    Q. Zhao, J. Zhou, F. Zhang, D. Lippens, Mater. Today 12, 60 (2009) CrossRefGoogle Scholar
  32. 32.
    L. Peng, L. Ran, H. Chen, H. Zhang, J.A. Kong, T.M. Grzegorczyk, Phys. Rev. Lett. 98, 157403 (2007) ADSCrossRefGoogle Scholar
  33. 33.
    B.I. Popa, S.A. Cummer, Phys. Rev. Lett. 100, 207401 (2008) ADSCrossRefGoogle Scholar
  34. 34.
    Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, L. Li, Phys. Rev. Lett. 101, 027402 (2008) ADSCrossRefGoogle Scholar
  35. 35.
    Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, Y. Meng, Appl. Phys. Lett. 92, 051106 (2008) ADSCrossRefGoogle Scholar
  36. 36.
    O. Acher, M. Ledieu, A. Bardaine, F. Levassort, Appl. Phys. Lett. 93, 032501 (2008) ADSCrossRefGoogle Scholar
  37. 37.
    O. Acher, J.H. Le Gallou, M. Ledieu, Metamaterials 2, 18 (2008) ADSCrossRefGoogle Scholar
  38. 38.
    X.Q. Lin et al., Appl. Phys. Lett. 92, 131904 (2008) ADSCrossRefGoogle Scholar
  39. 39.
    J.A. Schuller, R. Zia, T. Taubner, M.L. Brongersma, Phys. Rev. Lett. 99, 107401 (2007) ADSCrossRefGoogle Scholar
  40. 40.
    C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, T. Scharf, Phys. Rev. Lett. 99, 017401 (2007) ADSCrossRefGoogle Scholar
  41. 41.
    Q. Wu, W. Park, Appl. Phys. Lett. 92, 153114 (2008) ADSCrossRefGoogle Scholar
  42. 42.
    W. Park, Q. Wu, Solid State Commun. 146, 221 (2008) ADSCrossRefGoogle Scholar
  43. 43.
    H.J. Lee, Q. Wu, W. Park, Opt. Lett. 34, 443 (2009) ADSCrossRefGoogle Scholar
  44. 44.
    V.A. Tamma, J.H. Lee, Q. Wu, W. Park, Appl. Opt. 49, A11 (2010) ADSCrossRefGoogle Scholar
  45. 45.
    X. Zeng et al., Adv. Mater. 21, 1746 (2009) CrossRefGoogle Scholar
  46. 46.
    N. Stefanou, V. Karathanos, A. Modinos, J. Phys. Condens. Matter 4, 7389 (1992) ADSCrossRefGoogle Scholar
  47. 47.
    N. Stefanou, V. Yannopapas, A. Modinos, Comput. Phys. Commun. 113, 49 (1998) ADSzbMATHCrossRefGoogle Scholar
  48. 48.
    N. Stefanou, V. Yannopapas, A. Modinos, Comput. Phys. Commun. 132, 189 (2000) ADSzbMATHCrossRefGoogle Scholar
  49. 49.
    G. Gantzounis, N. Stefanou, Phys. Rev. B 73, 035115 (2006) ADSCrossRefGoogle Scholar
  50. 50.
    J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1975) zbMATHGoogle Scholar
  51. 51.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983) Google Scholar
  52. 52.
    R. Sainidou, N. Stefanou, A. Modinos, Phys. Rev. B 69, 064301 (2004) ADSCrossRefGoogle Scholar
  53. 53.
    V. Yannopapas, N.V. Vitanov, Phys. Rev. B 75, 115124 (2007) ADSCrossRefGoogle Scholar
  54. 54.
    M. Inoue, K. Ohtaka, J. Phys. Soc. Jpn. 52, 3853 (1983) ADSCrossRefGoogle Scholar
  55. 55.
    H. Xu, E.J. Bjerneld, M. Käll, L. Börjesson, Phys. Rev. Lett. 83, 4357 (1999) ADSCrossRefGoogle Scholar
  56. 56.
    H. Xu, J. Aizpurua, M. Käll, P. Apell, Phys. Rev. E 62, 4318 (2000) ADSCrossRefGoogle Scholar
  57. 57.
    H. Xu, M. Käll, Phys. Rev. Lett. 89, 246802 (2002) ADSCrossRefGoogle Scholar
  58. 58.
    H. Xu, J. Opt. Soc. Am. A 21, 804 (2004) ADSCrossRefGoogle Scholar
  59. 59.
    K. Zhao, H. Xu, B. Gu, Z. Zhang, J. Chem. Phys. 125, 081102 (2006) ADSCrossRefGoogle Scholar
  60. 60.
    Z. Li, H. Xu, J. Quant. Spectrosc. Radiat. Transf. 103, 394 (2007) ADSCrossRefGoogle Scholar
  61. 61.
    J.L. Beeby, J. Phys. C 1, 82 (1968) ADSCrossRefGoogle Scholar
  62. 62.
    A. Gonis, Green Functions for Ordered and Disordered Systems (North-Holland, Amsterdam, 1992) zbMATHGoogle Scholar
  63. 63.
    N. Stefanou, A. Modinos, J. Phys. Condens. Matter 3, 8135 (1991) ADSCrossRefGoogle Scholar
  64. 64.
    N. Stefanou, A. Modinos, J. Phys. Condens. Matter 3, 8149 (1991) ADSCrossRefGoogle Scholar
  65. 65.
    A. Modinos, V. Yannopapas, N. Stefanou, Phys. Rev. B 61, 8099 (2000) ADSCrossRefGoogle Scholar
  66. 66.
    V. Yannopapas, Phys. Rev. B 75, 035112 (2007) ADSCrossRefGoogle Scholar
  67. 67.
    R.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972) ADSCrossRefGoogle Scholar
  68. 68.
    V. Yannopapas, Phys. Rev. B 73, 113108 (2006) ADSCrossRefGoogle Scholar
  69. 69.
    V.M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films (Springer, Heidelberg, 2000) Google Scholar
  70. 70.
    K. Aydin, V.E. Ferry, R.M. Briggs, H.A. Atwater, Nat. Commun. (2011). doi: 10.1038/ncomms1528 Google Scholar
  71. 71.
    J.G. Fleming, S.Y. Lin, I. El-Kady, R. Biswas, K.M. Ho, Nature (London) 417, 52 (2002) ADSCrossRefGoogle Scholar
  72. 72.
    M.U. Pralle, N. Moelders, M.P. McNeal, I. Puscasu, A.C. Greenwald, J.T. Daly, E.A. Johnson, T. George, D.S. Choi, I. El-Kady, R. Biswas, Appl. Phys. Lett. 81, 4685 (2002) ADSCrossRefGoogle Scholar
  73. 73.
    I. Celanovic, F.O. Sullivan, M. Ilak, J. Kassakian, D. Perreault, Opt. Lett. 29, 863 (2004) ADSCrossRefGoogle Scholar
  74. 74.
    A. Narayanaswamy, G. Chen, Phys. Rev. B 70, 125101 (2004) ADSCrossRefGoogle Scholar
  75. 75.
    S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, G. Albrand, Appl. Phys. Lett. 86, 261101 (2005) ADSCrossRefGoogle Scholar
  76. 76.
    A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J.P. Mondia, G.A. Ozin, O. Toader, H.M. van Driel, Nature (London) 405, 437 (2000) ADSCrossRefGoogle Scholar
  77. 77.
    N. Shalkevich, A. Shalkevich, L. Si-Ahmed, T. Bürgi, Phys. Chem. Chem. Phys. 11, 10175 (2009) CrossRefGoogle Scholar
  78. 78.
    S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Bürgi, F. Lederer, Opt. Express 19, 9607 (2011) ADSCrossRefGoogle Scholar
  79. 79.
    A. Modinos, Physica A 141, 575 (1987) ADSCrossRefGoogle Scholar
  80. 80.
    G. Frens, Nat. Phys. Sci. 241, 20 (1973) ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vassilios Yannopapas
    • 1
  • Alexandros G. Vanakaras
    • 1
  • Demetri J. Photinos
    • 1
  1. 1.Department of Materials ScienceUniversity of PatrasPatrasGreece

Personalised recommendations