Advertisement

Plasmonic Nanoparticle-Based Metamaterials: From Electric to Magnetic Response

  • José Dintinger
  • Toralf Scharf
Part of the Nano-Optics and Nanophotonics book series (NON)

Abstract

The self-assembly of nanoparticles into hierarchical architectures is currently attracting a lot of interest due to their potential applications in a wide range of fields like nanophotonics, nanoelectronics or catalysis. In the present chapter, we discuss the potential of metal nanospheres for the bottom-up fabrication of optical metamaterials. Controlling the spatial arrangement of the nanoparticles in these composites offers a promising route to engineer unique optical responses originating from their collective plasmonic resonance. Here we explore experimentally how different types of NP arrangements can give rise to distinct macroscopic effective properties, including both electric and magnetic optical responses. For each of the structures investigated, we propose a brief overview of the current state-of-the-art of the appropriate bottom-up fabrication methods and analyze their optical properties in details. First, the optical constants of “bulk” amorphous nanoparticle metamaterials are investigated by ellipsometry, demonstrating that controlling the nanoparticle filling fraction provides an efficient route to tune the metamaterial permittivity. As an example of a potential application, the realization of a hybrid plasmonic Bragg mirror is discussed. Finally, we focused on the fabrication and characterization of dense spherical nanoclusters that can sustain a magnetic response at optical frequencies. In doing so, we demonstrate the possibility to engineer the permeability of nanocluster-based metamaterials, thereby opening interesting perspectives for the realization of isotropic negative index materials operating in the visible.

Keywords

Surface Enhance Raman Scatter Localize Surface Plasmon Resonance Effective Permittivity Dipolar Magnetic Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was funded by the European Union’s Seven Framework Programme (FP7/2007-2013) under grant agreement n228455 (Nanogold project). We thank Carsten Rockstuhl, Stefan Mühlig and Tobias Kienzler for their input and support regarding the theoretical aspects of this work, and Houda Sellame for the preparation of multilayer samples.

References

  1. 1.
    M.I. Stockman, Nanoplasmonics: the physics behind the applications. Phys. Today 64, 39–44 (2011) CrossRefGoogle Scholar
  2. 2.
    W.A. Murray, W.L. Barnes, Plasmonic materials. Adv. Mater. 19, 3771–3782 (2007) CrossRefGoogle Scholar
  3. 3.
    E. Hutter, J.H. Fendler, Exploitation of localized surface plasmon resonance. Adv. Mater. 16, 1685–1706 (2004) CrossRefGoogle Scholar
  4. 4.
    I. Angelini et al., Chemical analyses of Bronze Age glasses from Frattesina di Rovigo, Northern Italy. J. Archaeol. Sci. 31, 1175–1184 (2004) MathSciNetCrossRefGoogle Scholar
  5. 5.
    P. Colomban, The use of metal nanoparticles to produce yellow, red and iridescent colour, from Bronze Age to Present Times in lustre pottery and glass: solid state chemistry, spectroscopy and nanostructure. J. Nanopart. Res. 8, 109–132 (2009) Google Scholar
  6. 6.
    I. Freestone, N. Meeks, M. Sax, C. Higgitt, The lycurgus cup—A Roman nanotechnology. Gold Bull. 40, 270–277 (2007) CrossRefGoogle Scholar
  7. 7.
    P. Colomban, A. Tournie, P. Ricciardi, Raman spectroscopy of copper nanoparticle-containing glass matrices: ancient red stained-glass windows. J. Raman Spectrosc. 40, 1949–1955 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    S. Perez-Villar, J. Rubio, J. Luis Oteo, Study of color and structural changes in silver painted medieval glasses. J. Non-Cryst. Solids 354, 1833–1844 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    M. Faraday, The Bakerian lecture: experimental relations of gold (and other metals) to light. Philos. Trans. R. Soc. Lond. 147, 145–181 (1857) CrossRefGoogle Scholar
  10. 10.
    P.P. Edwards, J.M. Thomas, Gold in a metallic divided state—from Faraday to present-day nanoscience. Angew. Chem., Int. Ed. 46, 5480–5486 (2007) CrossRefGoogle Scholar
  11. 11.
    L. Rayleigh, On the light from the sky, its polarization and colour. Philos. Mag. 41, 107–120; 274–279 (1871) Google Scholar
  12. 12.
    L. Lorenz, Oeuvres scientifiques (Carlsbergfondet, Copenhagen, 1898) zbMATHGoogle Scholar
  13. 13.
    G. Mie, On the optical characteristics of turbid media, especially colloidal metal solutions. Ann. Phys. 25, 377–445 (1908) zbMATHCrossRefGoogle Scholar
  14. 14.
    H.C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957) Google Scholar
  15. 15.
    M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic Press, San Diego, 1969) Google Scholar
  16. 16.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983) Google Scholar
  17. 17.
    U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995) Google Scholar
  18. 18.
    P. Muhlschlegel, H.J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Resonant optical antennas. Science 308, 1607–1609 (2005) ADSCrossRefGoogle Scholar
  19. 19.
    L. Novotny, N. van Hulst, Antennas for light. Nat. Photonics 5, 83–90 (2011) ADSCrossRefGoogle Scholar
  20. 20.
    N.J. Halas, S. Lal, W.-S. Chang, S. Link, P. Nordlander, Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913–3961 (2011) CrossRefGoogle Scholar
  21. 21.
    K. Li, M.I. Stockman, D.J. Bergman, Self-similar chain of metal nanospheres as an efficient nanolens. Phys. Rev. Lett. 91, 227402 (2003) ADSCrossRefGoogle Scholar
  22. 22.
    N. Liu et al., Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater. 8, 758–762 (2009) ADSCrossRefGoogle Scholar
  23. 23.
    J.A. Fan et al., Self-assembled plasmonic nanoparticle clusters. Science 328, 1135–1138 (2010) ADSCrossRefGoogle Scholar
  24. 24.
    A. Iwakoshi, T. Nanke, T. Kobayashi, Coating materials containing gold nanoparticles. Gold Bull. 38, 107–112 (2005) CrossRefGoogle Scholar
  25. 25.
    T. Keel, R. Holliday, T. Harper, White Paper: Gold for good—gold and nanotechnology in the age of innovation. World Gold Council, www.gold.org
  26. 26.
    M.A. Garcia, Surface plasmons in metallic nanoparticles: fundamentals and applications. J. Phys. D: Appl. Phys. 44, 283001 (2011) CrossRefGoogle Scholar
  27. 27.
    P.K. Jain, X. Huang, I.H. El-Sayed, M.A. El-Sayed, Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41, 1578–1586 (2008) CrossRefGoogle Scholar
  28. 28.
    R. Wilson, The use of gold nanoparticles in diagnostics and detection. Chemical Society Reviews 37, 2028–2045 (2008) CrossRefGoogle Scholar
  29. 29.
    K.A. Willets, R.P. Van Duyne, in Annual Review of Physical Chemistry, vol. 58 (2007), pp. 267–297 Google Scholar
  30. 30.
    J.N. Anker et al., Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008) ADSCrossRefGoogle Scholar
  31. 31.
    K.M. Mayer, J.H. Hafner, Localized surface plasmon resonance sensors. Chem. Rev. 111, 3828–3857 (2011) CrossRefGoogle Scholar
  32. 32.
    J.R. Lakowicz et al., Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. Analyst 133, 1308–1346 (2008) ADSCrossRefGoogle Scholar
  33. 33.
    P.L. Stiles, J.A. Dieringer, N.C. Shah, R.R. Van Duyne, in Annual Review of Analytical Chemistry, vol. 1 (2008), pp. 601–626 Google Scholar
  34. 34.
    E.C. Le Ru, P.G. Etchegoin, in Annual Review of Physical Chemistry, vol. 63, ed. by M.A. Johnson, T.J. Martinez (2012), pp. 65–87 Google Scholar
  35. 35.
    Y. Xiao et al., Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles. Appl. Phys. Lett. 100 (2012) Google Scholar
  36. 36.
    H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010) ADSCrossRefGoogle Scholar
  37. 37.
    S.A. Maier et al., Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2, 229–232 (2003) ADSCrossRefGoogle Scholar
  38. 38.
    M.L. Juan, M. Righini, R. Quidant, Plasmon nano-optical tweezers. Nat. Photonics 5, 349–356 (2011) ADSCrossRefGoogle Scholar
  39. 39.
    L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006) CrossRefGoogle Scholar
  40. 40.
    W. Srituravanich, N. Fang, C. Sun, Q. Luo, X. Zhang, Plasmonic nanolithography. Nano Lett. 4, 1085–1088 (2004) ADSCrossRefGoogle Scholar
  41. 41.
    D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Metamaterials and negative refractive index. Science 305, 788–792 (2004) ADSCrossRefGoogle Scholar
  42. 42.
    Y. Liu, X. Zhang, Metamaterials: a new frontier of science and technology. Chemical Society Reviews 40, 2494–2507 (2011) CrossRefGoogle Scholar
  43. 43.
    W. Cai, V. Shalaev, Optical Metamaterials Fundamentals and Applications Introduction (Springer, Berlin, 2010) Google Scholar
  44. 44.
    C.M. Soukoulis, M. Wegener, Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 5, 523–530 (2011) ADSGoogle Scholar
  45. 45.
    A. de Baas (ed.) Nanostructured Metamaterials, KI-NA-24409-EN-C (2010). ISBN 978-92-79-07563-6 Google Scholar
  46. 46.
    J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000) ADSCrossRefGoogle Scholar
  47. 47.
    J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields. Science 312, 1780–1782 (2006) MathSciNetADSzbMATHCrossRefGoogle Scholar
  48. 48.
    R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292, 77–79 (2001) ADSCrossRefGoogle Scholar
  49. 49.
    C.M. Soukoulis, S. Linden, M. Wegener, Negative refractive index at optical wavelengths. Science 315, 47–49 (2007) CrossRefGoogle Scholar
  50. 50.
    V.M. Shalaev, Optical negative-index metamaterials. Nat. Photonics 1, 41–48 (2007) ADSCrossRefGoogle Scholar
  51. 51.
    S. Linden et al., Magnetic response of metamaterials at 100 terahertz. Science 306, 1351–1353 (2004) ADSCrossRefGoogle Scholar
  52. 52.
    V.M. Shalaev et al., Negative index of refraction in optical metamaterials. Opt. Lett. 30, 3356–3358 (2005) ADSCrossRefGoogle Scholar
  53. 53.
    J. Valentine et al., Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376-U332 (2008) CrossRefGoogle Scholar
  54. 54.
    M. Grzelczak, J. Vermant, E.M. Furst, L.M. Liz-Marzan, Directed self-assembly of nanoparticles. ACS Nano 4, 3591–3605 (2010) CrossRefGoogle Scholar
  55. 55.
    M. Rycenga et al., Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111, 3669–3712 (2011) CrossRefGoogle Scholar
  56. 56.
    C.R. Simovski, S.A. Tretyakov, Model of isotropic resonant magnetism in the visible range based on core-shell clusters. Phys. Rev. B 79, 045111 (2009) ADSCrossRefGoogle Scholar
  57. 57.
    C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, T. Scharf, Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum. Phys. Rev. Lett. 99, 017401 (2007) ADSCrossRefGoogle Scholar
  58. 58.
    A. Vallecchi, M. Albani, F. Capolino, Collective electric and magnetic plasmonic resonances in spherical nanoclusters. Opt. Express 19, 2754–2772 (2011) ADSCrossRefGoogle Scholar
  59. 59.
    V. Yannopapas, Artificial magnetism and negative refractive index in three-dimensional metamaterials of spherical particles at near-infrared and visible frequencies. Appl. Phys. A, Mater. Sci. Process. 87, 259–264 (2007) ADSCrossRefGoogle Scholar
  60. 60.
    V. Yannopapas, A. Moroz, Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges. J. Phys. Condens. Matter 17, 3717–3734 (2005) ADSCrossRefGoogle Scholar
  61. 61.
    C. Helgert et al., Effective properties of amorphous metamaterials. Phys. Rev. B 79, 233107 (2009) ADSCrossRefGoogle Scholar
  62. 62.
    V. Yannopapas, Negative refraction in random photonic alloys of polaritonic and plasmonic microspheres. Phys. Rev. B 75, 035112 (2007) ADSCrossRefGoogle Scholar
  63. 63.
    M.S. Wheeler, J.S. Aitchison, J.I.L. Chen, G.A. Ozin, M. Mojahedi, Infrared magnetic response in a random silicon carbide micropowder. Phys. Rev. B 79, 073103 (2009) ADSCrossRefGoogle Scholar
  64. 64.
    C. Rockstuhl, T. Scharf, A metamaterial based on coupled metallic nanoparticles and its band-gap property. J. Microsc. 229, 281–286 (2008) MathSciNetCrossRefGoogle Scholar
  65. 65.
    S. Xiao et al., Loss-free and active optical negative-index metamaterials. Nature 466, 735–736 (2010) ADSCrossRefGoogle Scholar
  66. 66.
    R. Pratibha, K. Park, I.I. Smalyukh, W. Park, Tunable optical metamaterial based on liquid crystal-gold nanosphere composite. Opt. Express 17, 19459–19469 (2009) ADSCrossRefGoogle Scholar
  67. 67.
    S. Sivaramakrishnan, P.-J. Chia, Y.-C. Yeo, L.-L. Chua, P.K.H. Ho, Controlled insulator-to-metal transformation in printable polymer composites with nanometal clusters. Nat. Mater. 6, 149–155 (2007) ADSCrossRefGoogle Scholar
  68. 68.
    A. Kamiyshny, J. Steinke, S. Magdassi, Metal-based inkjet inks for printed electronics. Open Appl. Phys. J. 4, 19–36 (2011) CrossRefGoogle Scholar
  69. 69.
    P. Tassin, T. Koschny, M. Kafesaki, C.M. Soukoulis, A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics. Nat. Photonics 6, 259–264 (2012) ADSCrossRefGoogle Scholar
  70. 70.
    Z. Nie, A. Petukhova, E. Kumacheva, Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol. 5, 15–25 (2010) ADSCrossRefGoogle Scholar
  71. 71.
    K.J.M. Bishop, C.E. Wilmer, S. Soh, B.A. Grzybowski, Nanoscale forces and their uses in self-assembly. Small 5, 1600–1630 (2009) CrossRefGoogle Scholar
  72. 72.
    F. Caruso, Colloids and Colloid Assemblies (Wiley-VCH, New York, 2003) CrossRefGoogle Scholar
  73. 73.
    B.A. Grzybowski, C.E. Wilmer, J. Kim, K.P. Browne, K.J.M. Bishop, Self-assembly: from crystals to cells. Soft Matter 5, 1110–1128 (2009) ADSCrossRefGoogle Scholar
  74. 74.
    M.-P. Pileni, Nanocrystals Forming Mesoscopic Structures (Wiley-VCH, New York, 2005) CrossRefGoogle Scholar
  75. 75.
    F. Li, D.P. Josephson, A. Stein, Colloidal assembly: the road from particles to colloidal molecules and crystals. Angew. Chem., Int. Ed. 50, 360–388 (2011) CrossRefGoogle Scholar
  76. 76.
    Y. Min, M. Akbulut, K. Kristiansen, Y. Golan, J. Israelachvili, The role of interparticle and external forces in nanoparticle assembly. Nat. Mater. 7, 527–538 (2008) ADSCrossRefGoogle Scholar
  77. 77.
    M.R. Jones, K.D. Osberg, R.J. Macfarlane, M.R. Langille, C.A. Mirkin, Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev. 111, 3736–3827 (2011) CrossRefGoogle Scholar
  78. 78.
    A.R. Tao, D.P. Ceperley, P. Sinsermsuksakul, A.R. Neureuther, P. Yang, Self-organized silver nanoparticles for three-dimensional plasmonic crystals. Nano Lett. 8, 4033–4038 (2008) ADSCrossRefGoogle Scholar
  79. 79.
    J. Henzie, M. Gruenwald, A. Widmer-Cooper, P.L. Geissler, P. Yang, Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nat. Mater. 11, 131–137 (2012) ADSCrossRefGoogle Scholar
  80. 80.
    E.V. Shevchenko, D.V. Talapin, N.A. Kotov, S. O’Brien, C.B. Murray, Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006) ADSCrossRefGoogle Scholar
  81. 81.
    C.B. Murray, C.R. Kagan, M.G. Bawendi, Self-organization of CdSe nanocrystallites into 3-dimensional quantum-dot superlattices. Science 270, 1335–1338 (1995) ADSCrossRefGoogle Scholar
  82. 82.
    C.B. Murray, C.R. Kagan, M.G. Bawendi, Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000) ADSCrossRefGoogle Scholar
  83. 83.
    M.I. Bodnarchuk et al., Three-dimensional nanocrystal superlattices grown in nanoliter microfluidic plugs. J. Am. Chem. Soc. 133, 8956–8960 (2011) CrossRefGoogle Scholar
  84. 84.
    S. Coe-Sullivan, J.S. Steckel, W.K. Woo, M.G. Bawendi, V. Bulovic, Large-area ordered quantum-dot monolayers via phase separation during spin-casting. Adv. Funct. Mater. 15, 1117–1124 (2005) CrossRefGoogle Scholar
  85. 85.
    P.F. Damasceno, M. Engel, S.C. Glotzer, Predictive self-assembly of polyhedra into complex structures. Science 337, 453–457 (2012) ADSCrossRefGoogle Scholar
  86. 86.
    A.M. Kalsin et al., Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312, 420–424 (2006) ADSCrossRefGoogle Scholar
  87. 87.
    D.V. Talapin et al., Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 461, 964–967 (2009) ADSCrossRefGoogle Scholar
  88. 88.
    A. Yethiraj, A. van Blaaderen, A colloidal model system with an interaction tunable from hard sphere to soft and dipolar. Nature 421, 513–517 (2003) ADSCrossRefGoogle Scholar
  89. 89.
    A.P. Alivisatos et al., Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996) ADSCrossRefGoogle Scholar
  90. 90.
    C.A. Mirkin, R.L. Letsinger, R.C. Mucic, J.J. Storhoff, A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996) ADSCrossRefGoogle Scholar
  91. 91.
    X. Zeng et al., 3D ordered gold strings by coating nanoparticles with mesogens. Adv. Mater. 21, 1746 (2009) CrossRefGoogle Scholar
  92. 92.
    L. Cseh, G.H. Mehl, The design and investigation of room temperature thermotropic nematic gold nanoparticles. J. Am. Chem. Soc. 128, 13376–13377 (2006) CrossRefGoogle Scholar
  93. 93.
    I.I.S. Lim, C.-J. Zhong, Molecularly-mediated assembly of gold nanoparticles. Gold Bull. 40, 59–66 (2007) CrossRefGoogle Scholar
  94. 94.
    R. Klajn et al., Plastic and moldable metals by self-assembly of sticky nanoparticle aggregates. Science 316, 261–264 (2007) ADSCrossRefGoogle Scholar
  95. 95.
    B. Donnio, P. Garcia-Vazquez, J.-L. Gallani, D. Guillon, E. Terazzi, Dendronized ferromagnetic gold nanoparticles self-organized in a thermotropic cubic phase. Adv. Mater. 19, 3534 (2007) CrossRefGoogle Scholar
  96. 96.
    G. Decher, J. Schlenoff, Multilayer Thin Films: Sequential Assembly of Nanocomposite Multilayers (Wiley-VCH, New York, 2012) CrossRefGoogle Scholar
  97. 97.
    G. Decher, Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277, 1232–1237 (1997) CrossRefGoogle Scholar
  98. 98.
    D.L. Feldheim, K.C. Grabar, M.J. Natan, T.E. Mallouk, Electron transfer in self-assembled inorganic Polyelectrolyte/Metal nanoparticle heterostructures. J. Am. Chem. Soc. 118, 7640–7641 (1996) CrossRefGoogle Scholar
  99. 99.
    A. Cunningham, S. Muehlig, C. Rockstuhl, T. Buergi, Coupling of plasmon resonances in tunable layered arrays of gold nanoparticles. J. Phys. Chem. C 115, 8955–8960 (2011) CrossRefGoogle Scholar
  100. 100.
    M. Brust, D. Bethell, C.J. Kiely, D.J. Schiffrin, Self-assembled gold nanoparticle thin films with nonmetallic optical and electronic properties. Langmuir 14, 5425–5429 (1998) CrossRefGoogle Scholar
  101. 101.
    T.A. Taton, R.C. Mucic, C.A. Mirkin, R.L. Letsinger, The DNA-mediated formation of supramolecular mono- and multilayered nanoparticle structures. J. Am. Chem. Soc. 122, 6305–6306 (2000) CrossRefGoogle Scholar
  102. 102.
    N. Higashi, T. Takagi, T. Koga, Layer-by-layer fabrication of well-packed gold nanoparticle assemblies guided by a [beta]-sheet peptide network. Polym. J. 42, 95–99 (2010) CrossRefGoogle Scholar
  103. 103.
    B.G. Jung et al., Colloidal nanoparticle-layer formation through dip-coating: effect of solvents and substrate withdrawing speed. J. Electrochem. Soc. 156, K86–K90 (2009) CrossRefGoogle Scholar
  104. 104.
    N.D. Denkov et al., Mechanism of formation of two-dimensional crystals from latex particles on substrates. Langmuir 8, 3183–3190 (1992) CrossRefGoogle Scholar
  105. 105.
    A.G. Emslie, F.T. Bonner, L.G. Peck, Flow of a viscous liquid on a rotating disk. J. Appl. Phys. 29, 858–862 (1958) MathSciNetADSzbMATHCrossRefGoogle Scholar
  106. 106.
    D.P. Birnie, The Basic Physical Processes that Control Spin Coating. http://www.coatings.rutgers.edu/basics.htm (2005)
  107. 107.
    P. Jiang, M.J. McFarland, Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating. J. Am. Chem. Soc. 126, 13778–13786 (2004) CrossRefGoogle Scholar
  108. 108.
    P. Jiang, T. Prasad, M.J. McFarland, V.L. Colvin, Two-dimensional nonclose-packed colloidal crystals formed by spincoating. Applied Physics Letters 89 (2006) Google Scholar
  109. 109.
    R.S. Krishnan et al., Self-assembled multilayers of nanocomponents. Nano Lett. 7, 484–489 (2007) ADSCrossRefGoogle Scholar
  110. 110.
    D. Itoh, A. Izumitani, N. Hata, Y. Matsuba, K. Murata, H. Yokoyama, Metal nano particle liquid dispersion capable of being sprayed in fine particle form and being applied in laminated state (2004) Google Scholar
  111. 111.
    O. Heavens, Optical Properties of Thin Solid Films (Butterworths, Stoneham, 1955) Google Scholar
  112. 112.
    J.N. Hilfiker et al., Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry. Thin Solid Films 516, 7979–7989 (2008) ADSCrossRefGoogle Scholar
  113. 113.
    C.R. Simovski, On electromagnetic characterization and homogenization of nanostructured metamaterials. J. Opt. 13 (2011) Google Scholar
  114. 114.
    R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light (Elsevier, Amsterdam, 1987) Google Scholar
  115. 115.
    M. Losurdo et al., Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives. J. Nanopart. Res. 11, 1521–1554 (2009) CrossRefGoogle Scholar
  116. 116.
    T.W.H. Oates, H. Wormeester, H. Arwin, Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry. Prog. Surf. Sci. 86, 328–376 (2011) ADSCrossRefGoogle Scholar
  117. 117.
    S. Kubo et al., Tunability of the refractive index of gold nanoparticle dispersions. Nano Lett. 7, 3418–3423 (2007) MathSciNetADSCrossRefGoogle Scholar
  118. 118.
    H. Wormeester, A.-I. Henry, E.S. Kooij, B. Poelsema, M.-P. Pileni, Ellipsometric identification of collective optical properties of silver nanocrystal arrays. J. Chem. Phys. 124, 204713 (2006) ADSCrossRefGoogle Scholar
  119. 119.
    H.L. Zhang, S.D. Evans, J.R. Henderson, Spectroscopic ellipsometric evaluation of gold nanoparticle thin films fabricated using layer-by-layer self-assembly. Adv. Mater. 15, 531–534 (2003) CrossRefGoogle Scholar
  120. 120.
    H. Pan, S.H. Ko, C.P. Grigoropoulos, Thermal sintering of solution-deposited nanoparticle silver ink films characterized by spectroscopic ellipsometry. Appl. Phys. Lett. 93, 234104 (2008) ADSCrossRefGoogle Scholar
  121. 121.
    R.A. Synowicki, in Physica Status Solidi C—Current Topics in Solid State Physics, vol. 5, ed. by H. Beck, U. Schubert, M. Arwin (2008), pp. 1085–1088 Google Scholar
  122. 122.
    J.C. Maxwell Garnett, Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. Lond. A 203, 385 (1904) ADSCrossRefGoogle Scholar
  123. 123.
    D. Bedeaux, J. Vlieger, Optical Properties of Surfaces (Imperial College Press, London, 2001) CrossRefGoogle Scholar
  124. 124.
    H. Wormeester, E.S. Kooij, B. Poelsema, Effective dielectric response of nanostructured layers. Phys. Status Solidi, a Appl. Mater. Sci. 205, 756–763 (2008) ADSCrossRefGoogle Scholar
  125. 125.
    W. Zhou, T.W. Odom, Tunable subradiant lattice plasmons by out-of-plane dipolar interactions. Nat. Nanotechnol. 6, 423–427 (2011) ADSCrossRefGoogle Scholar
  126. 126.
    S.L. Zou, G.C. Schatz, Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays. J. Chem. Phys. 121, 12606–12612 (2004) ADSCrossRefGoogle Scholar
  127. 127.
    M.E. Calvo, O. Sanchez Sobrado, G. Lozano, H. Miguez, Molding with nanoparticle-based one-dimensional photonic crystals: a route to flexible and transferable Bragg mirrors of high dielectric contrast. J. Mater. Chem. 19, 3144–3148 (2009) CrossRefGoogle Scholar
  128. 128.
    S. Colodrero, M. Ocana, H. Miguez, Nanoparticle-based one-dimensional photonic crystals. Langmuir 24, 4430–4434 (2008) CrossRefGoogle Scholar
  129. 129.
    S.-H. Song et al., Bragg gratings generated by coupling of surface plasmons induced on metal nanoparticles. J. Opt. Soc. Korea 8, 6–12 (2004) CrossRefGoogle Scholar
  130. 130.
    S. Husaini, L. Deych, V.M. Menon, Plasmon-resonance-induced enhancement of the reflection band in a one-dimensional metal nanocomposite photonic crystal. Opt. Lett. 36, 1368–1370 (2011) ADSCrossRefGoogle Scholar
  131. 131.
    S.-G. Kim, N. Hagura, F. Iskandar, A. Yabuki, K. Okuyama, Multilayer film deposition of Ag and SiO2 nanoparticles using a spin coating process. Thin Solid Films 516, 8721–8725 (2008) ADSCrossRefGoogle Scholar
  132. 132.
    T. Ogata, R. Yagi, N. Nakamura, Y. Kuwahara, S. Kurihara, Modulation of polymer refractive indices with diamond nanoparticles for metal-free multilayer film mirrors. ACS Appl. Mater. Interfaces 4, 3769–3772 (2012) CrossRefGoogle Scholar
  133. 133.
    D.P. Puzzo et al., Color from colorless nanomaterials: Bragg reflectors made of nanoparticles. J. Mater. Chem. 19, 3500–3506 (2009) CrossRefGoogle Scholar
  134. 134.
    A. Convertino, A. Capobianchi, A. Valentini, E.N.M. Cirillo, High reflectivity Bragg reflectors based on a gold nanoparticle/Teflon-like composite material as a new approach to organic solvent detection. Sens. Actuators B, Chem. 100, 212–215 (2004) CrossRefGoogle Scholar
  135. 135.
    S. Kachan, O. Stenzel, A. Ponyavina, High-absorbing gradient multilayer coatings with silver nanoparticles. Appl. Phys. B, Lasers Opt. 84, 281–287 (2006) ADSCrossRefGoogle Scholar
  136. 136.
    C. Wang, Y. Zhao, D. Gan, C. Du, X. Luo, Subwavelength imaging with anisotropic structure comprising alternately layered metal and dielectric films. Opt. Express 16, 4217–4227 (2008) ADSCrossRefGoogle Scholar
  137. 137.
    M. Scalora et al., Negative refraction and sub-wavelength focusing in the visible range using transparent metallodielectric stacks. Opt. Express 15, 508–523 (2007) ADSCrossRefGoogle Scholar
  138. 138.
    Q. Zhao, J. Zhou, F. Zhang, D. Lippens, Mie resonance-based dielectric metamaterials. Mater. Today 12, 60–69 (2009) CrossRefGoogle Scholar
  139. 139.
    S. O’Brien, J.B. Pendry, Photonic band-gap effects and magnetic activity in dielectric composites. J. Phys. Condens. Matter 14, 4035–4044 (2002) ADSCrossRefGoogle Scholar
  140. 140.
    L. Lewin, The electrical constants of a material loaded with spherical particles. Proc. Inst. Electr. Eng. 94, 65–68 (1947) Google Scholar
  141. 141.
    L. Peng et al., Experimental observation of left-handed behavior in an array of standard dielectric resonators. Phys. Rev. Lett. 98, 157403 (2007) ADSCrossRefGoogle Scholar
  142. 142.
    J.A. Schuller, R. Zia, T. Taubner, M.L. Brongersma, Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles. Phys. Rev. Lett. 99 (2007) Google Scholar
  143. 143.
    A.B. Evlyukhin, C. Reinhardt, A. Seidel, B.S. Luk’yanchuk, B.N. Chichkov, Optical response features of Si-nanoparticle arrays. Phys. Rev. B 82, 045404 (2010) ADSCrossRefGoogle Scholar
  144. 144.
    R. Paniagua-Domínguez, F. López-Tejeira, R. Marqués, J.A. Sánchez-Gil, Metallo-dielectric core–shell nanospheres as building blocks for optical three-dimensional isotropic negative-index metamaterials. New J. Phys. 13, 123017 (2011) ADSCrossRefGoogle Scholar
  145. 145.
    V. Yannopapas, N.V. Vitanov, Photoexcitation-induced magnetism in arrays of semiconductor nanoparticles with a strong excitonic oscillator strength. Phys. Rev. B 74, 193304 (2006) ADSCrossRefGoogle Scholar
  146. 146.
    E. Duguet, A. Desert, A. Perro, S. Ravaine, Design and elaboration of colloidal molecules: an overview. Chemical Society Reviews 40, 941–960 (2011) CrossRefGoogle Scholar
  147. 147.
    J.M. Romo-Herrera, R.A. Alvarez-Puebla, L.M. Liz-Marzan, Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale 3, 1304–1315 (2011) ADSCrossRefGoogle Scholar
  148. 148.
    M.M. Maye et al., Mediator-template assembly of nanoparticles. J. Am. Chem. Soc. 127, 1519–1529 (2005) CrossRefGoogle Scholar
  149. 149.
    S.I. Lim, C.-J. Zhong, Molecularly mediated processing and assembly of nanoparticles: exploring the interparticle interactions and structures. Acc. Chem. Res. 42, 798–808 (2009) CrossRefGoogle Scholar
  150. 150.
    I. Hussain, Z.X. Wang, A.I. Cooper, M. Brust, Formation of spherical nanostructures by the controlled aggregation of gold colloids. Langmuir 22, 2938–2941 (2006) CrossRefGoogle Scholar
  151. 151.
    I.I.S. Lim et al., Assembly of gold nanoparticles mediated by multifunctional fullerenes. Langmuir 23, 10715–10724 (2007) CrossRefGoogle Scholar
  152. 152.
    I.I.S. Lim et al., Adsorption of cyanine dyes on gold nanoparticles and formation of J-aggregates in the nanoparticle assembly. J. Phys. Chem. B 110, 6673–6682 (2006) CrossRefGoogle Scholar
  153. 153.
    B.L. Frankamp, A.K. Boal, V.M. Rotello, in Three-Dimensional Nanoengineered Assemblies, ed. by T.M. Merhari, L. Taylor, D.P. Ikuta, K. Orlando. Materials Research Society Symposium Proceedings, vol. 739 (2003), pp. 83–87 Google Scholar
  154. 154.
    Y. Ofir, B. Samanta, V.M. Rotello, Polymer and biopolymer mediated self-assembly of gold nanoparticles. Chemical Society Reviews 37, 1814–1823 (2008) CrossRefGoogle Scholar
  155. 155.
    A.K. Boal, T.H. Galow, F. Ilhan, V.M. Rotello, Binary and ternary polymer-mediated “bricks and mortar” self-assembly of gold and silica nanoparticles. Adv. Funct. Mater. 11, 461–465 (2001) CrossRefGoogle Scholar
  156. 156.
    P. Arumugam, H. Xu, S. Srivastava, V.M. Rotello, ‘Bricks and mortar’ nanoparticle self-assembly using polymers. Polym. Int. 56, 461–466 (2007) CrossRefGoogle Scholar
  157. 157.
    A.K. Boal et al., Self-assembly of nanoparticles into structured spherical and network aggregates. Nature 404, 746–748 (2000) ADSCrossRefGoogle Scholar
  158. 158.
    Y. Cui et al., Integration of colloidal nanocrystals into lithographically patterned devices. Nano Lett. 4, 1093–1098 (2004) ADSCrossRefGoogle Scholar
  159. 159.
    Y.N. Xia, Y.D. Yin, Y. Lu, J. McLellan, Template-assisted self-assembly of spherical colloids into complex and controllable structures. Adv. Funct. Mater. 13, 907–918 (2003) CrossRefGoogle Scholar
  160. 160.
    H.-W. Huang, P. Bhadrachalam, V. Ray, S.J. Koh, Single-particle placement via self-limiting electrostatic gating. Appl. Phys. Lett. 93, 073110 (2008) ADSCrossRefGoogle Scholar
  161. 161.
    Q.G. Li, J.W. Zheng, Z.F. Liu, Site-selective assemblies of gold nanoparticles on an AFM tip-defined silicon template. Langmuir 19, 166–171 (2003) CrossRefGoogle Scholar
  162. 162.
    S.Y. Lee, L. Gradon, S. Janeczko, F. Iskandar, K. Okuyama, Formation of highly ordered nanostructures by drying micrometer colloidal droplets. ACS Nano 4, 4717–4724 (2010) CrossRefGoogle Scholar
  163. 163.
    V.N. Manoharan, M.T. Elsesser, D.J. Pine, Dense packing and symmetry in small clusters of microspheres. Science 301, 483–487 (2003) ADSCrossRefGoogle Scholar
  164. 164.
    I. Hussain, H. Zhang, M. Brust, J. Barauskas, A.I. Cooper, Emulsions-directed assembly of gold nanoparticles to molecularly-linked and size-controlled spherical aggregates. J. Colloid Interface Sci. 350, 368–372 (2010) CrossRefGoogle Scholar
  165. 165.
    P. Qiu, C. Jensen, N. Charity, R. Towner, C. Mao, Oil phase evaporation-induced self-assembly of hydrophobic nanoparticles into spherical clusters with controlled surface chemistry in an oil-in-water dispersion and comparison of behaviors of individual and clustered iron oxide nanoparticles. J. Am. Chem. Soc. 132, 17724–17732 (2010) CrossRefGoogle Scholar
  166. 166.
    F. Bai et al., A versatile bottom-up assembly approach to colloidal spheres from nanocrystals. Angew. Chem., Int. Ed. 46, 6650–6653 (2007) CrossRefGoogle Scholar
  167. 167.
    O.C. Compton, F.E. Osterloh, Evolution of size and shape in the colloidal crystallization of gold nanoparticles. J. Am. Chem. Soc. 129, 7793–7798 (2007) CrossRefGoogle Scholar
  168. 168.
    M.M. Maye, S.C. Chun, L. Han, D. Rabinovich, C.J. Zhong, Novel spherical assembly of gold nanoparticles mediated by a tetradentate thioether. J. Am. Chem. Soc. 124, 4958–4959 (2002) CrossRefGoogle Scholar
  169. 169.
    S. Mühlig et al., Three-dimensional metamaterial nanotips. Phys. Rev. B 81, 075317 (2010) ADSCrossRefGoogle Scholar
  170. 170.
    Y.L. Xu, Electromagnetic scattering by an aggregate of spheres. Appl. Opt. 34, 4573–4588 (1995) ADSCrossRefGoogle Scholar
  171. 171.
    J. Dintinger, S. Muehlig, C. Rockstuhl, T. Scharf, A bottom-up approach to fabricate optical metamaterials by self-assembled metallic nanoparticles. Opt. Mater. Express 2, 269–278 (2012) CrossRefGoogle Scholar
  172. 172.
    S. Mühlig, C. Menzel, C. Rockstuhl, F. Lederer, Multipole analysis of meta-atoms. Metamaterials 5, 64–73 (2011) ADSCrossRefGoogle Scholar
  173. 173.
    J. Petschulat et al., Understanding the electric and magnetic response of isolated metaatoms by means of a multipolar field decomposition. Opt. Express 18, 14454–14466 (2010) ADSCrossRefGoogle Scholar
  174. 174.
    C. Rockstuhl et al., Scattering properties of meta-atoms. Phys. Rev. B 83, 245119 (2011) ADSCrossRefGoogle Scholar
  175. 175.
    S. Mühlig et al., Optical properties of a fabricated self-assembled bottom-up bulk metamaterial. Opt. Express 19, 9607–9616 (2011) ADSCrossRefGoogle Scholar
  176. 176.
    S. Mühlig et al., Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range. ACS Nano 5, 6586–6592 (2011) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Optics & Photonics Technology LaboratoryEcole Polytechnique Fédérale de Lausanne (EPFL)NeuchâtelSwitzerland

Personalised recommendations