Advertisement

Random Light Scattering

  • Franz-Josef Haug
Part of the Nano-Optics and Nanophotonics book series (NON)

Abstract

This chapter presents optical properties of surface textures without any long range order in their geometry. Such textures are usually called random, as opposed to periodic ones like gratings. The random nature is extremely beneficial for applications where the optical response extends over a wide frequency range; suitable operation over an extended spectral domain is thus ensured by the absence of a preferential period, which would otherwise yield undesired selectivity of light scattering into a certain angle for a fixed frequency. To introduce the reader to this burgeoning field in the context of amorphous nanophotonics, this chapter starts by briefly introducing volume and surface scattering. After introducing a few random surface textures of technological importance, Sect. 11.3 discusses the statistical description of random surfaces in terms of root mean square roughness and autocorrelation length. Light scattering is discussed in terms of scalar scattering theory in Sect. 11.4. In Sect. 11.5 a Fourier theory is presented which avoids some of the limitations of scalar theory. Finally, Sect. 11.6 illustrates the application of random surfaces and the description of their scattering properties in thin film solar cells.

Keywords

Power Spectral Density Scalar Theory Surface Scattering Bidirectional Reflection Distribution Function Random Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was funded by the European Union, the Swiss National Science Foundation and the Swiss Federal Office for Energy. Dr. M. Python is thankfully acknowledged for recording the images in Figs. 11.2 and 11.3, Dr. K. Jäger of the Technical University of Delft provided the data for Fig. 11.13.

References

  1. 1.
    G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330(3), 377–445 (1908) CrossRefGoogle Scholar
  2. 2.
    K.E. Bean, Anisotropic etching of silicon. IEEE Trans. Electron Devices 25(10), 1185–1193 (1978) CrossRefGoogle Scholar
  3. 3.
    P. Campbell, M. Green, Light trapping properties of pyramidally textured surfaces. J. Appl. Phys. 62(1), 243–249 (1987) ADSCrossRefGoogle Scholar
  4. 4.
    O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, H.W. Schock, Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells. Thin Solid Films 351(1–2), 247–253 (1999) ADSCrossRefGoogle Scholar
  5. 5.
    J. Müller, B. Rech, J. Springer, M. Vanecek, TCO and light trapping in silicon thin film solar cells. Sol. Energy 77(6), 917–930 (2004) CrossRefGoogle Scholar
  6. 6.
    M. Hirasaka, K. Suzuki, K. Nakatani, M. Asano, M. Yano, H. Okaniwa, Design of textured Al electrode for a hydrogenated amorphous silicon solar cell. Sol. Energy Mater. 20(1–2), 99–110 (1990) CrossRefGoogle Scholar
  7. 7.
    A. Banerjee, S. Guha, Study of back reflectors for amorphous-silicon alloy solar-cell application. J. Appl. Phys. 69(2), 1030–1035 (1991) ADSCrossRefGoogle Scholar
  8. 8.
    H. Sakai, T. Yoshida, T. Hama, Y. Ichikawa, Effects of surface morphology of transparent electrode on the open-circuit voltage in a-Si:H solar cells. Jpn. J. Appl. Phys. 29 (part 1), 630–635 (1990) ADSCrossRefGoogle Scholar
  9. 9.
    K. Sato, Y. Gotoh, Y. Hayashi, K. Adachi, H. Nishimura, Improvement of textured SnO2:F films for a-Si solar cells. Reports of the Research Lab, Asahi Glass Co 40(2), 233–241 (1990) Google Scholar
  10. 10.
    J.A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. J. Vac. Sci. Technol. 11(4), 666–670 (1974) ADSCrossRefGoogle Scholar
  11. 11.
    S. Faÿ, U. Kroll, C. Bucher, E. Vallat-Sauvain, A. Shah, Low pressure chemical vapour deposition of ZnO layers for thin-film solar cells: temperature-induced morphological changes. Sol. Energy Mater. Sol. Cells 86(3), 385–397 (2005) CrossRefGoogle Scholar
  12. 12.
    S. Faÿ, J. Steinhauser, N. Oliveira, E. Vallat-Sauvain, C. Ballif, Opto-electronic properties of rough LP-CVD ZnO:B for use as TCO in thin-film silicon solar cells. Thin Solid Films 515(24), 8558–8561 (2007) ADSCrossRefGoogle Scholar
  13. 13.
    J. Bailat, D. Dominé, R. Schlüchter, J. Steinhauser, S. Faÿ, F. Freitas, C. Bucher, L. Feitknecht, X. Niquille, R. Tscharner, A. Shah, C. Ballif, High efficiency pin microcrystalline and micromorph thin film silicon solar cells deposited on LPCVD ZnO coated glass substrates, in Proc. 4th World PVSEC, 2006, Hawaii (2006), pp. 1533–1536 Google Scholar
  14. 14.
    J. Elson, J. Bennett, Relation between the angular dependence of scattering and the statistical properties of optical surfaces. J. Opt. Soc. Am. 69(1), 31–47 (1979) ADSCrossRefGoogle Scholar
  15. 15.
    J. Elson, J. Bennett, Calculation of the power spectral density from surface profile data. Appl. Opt. 34(1), 201–208 (1995) ADSCrossRefGoogle Scholar
  16. 16.
    H.E. Bennett, J.O. Porteus, Relation between surface roughness and specular reflectance at normal incidence. J. Opt. Soc. Am. 51(2), 123–129 (1961) MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    H. Davies, The reflection of electromagnetic waves from a rough surface. Proc. Inst. Electr. Eng. 101, 209 (1954) Google Scholar
  18. 18.
    S. Rice, Reflection of electromagnetic waves from slightly rough surfaces. Commun. Pure Appl. Math. 4(2–4), 351–378 (1951) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    P. Beckmann, A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Artech House, Norwood, 1987) Google Scholar
  20. 20.
    A. Maradudin, Light Scattering and Nanoscale Surface Roughness (Springer, Berlin, 2007) CrossRefGoogle Scholar
  21. 21.
    E.R. Méndez, D. Macías, Inverse problems in optical scattering, in Light Scattering and Nanoscale Surface Roughness, ed. by A.A. Maradudin (Springer, Berlin, 2007), pp. 435–464 CrossRefGoogle Scholar
  22. 22.
    C.K. Carniglia, Scalar scattering theory for multilayer optical coatings. Opt. Eng. 18(2), 104–115 (1979) ADSCrossRefGoogle Scholar
  23. 23.
    M. Zeman, R. Van Swaaij, J.W. Metselaar, R.E.I. Schropp, Optical modeling of a-Si:H solar cells with rough interfaces: effect of back contact and interface roughness. J. Appl. Phys. 88, 6436 (2000) ADSCrossRefGoogle Scholar
  24. 24.
    J. Krc, F. Smole, M. Topic, Analysis of light scattering in a-Si:H solar cells by a one-dimensional semi-coherent optical model. Prog. Photovolt. 11(1), 15–26 (2003) CrossRefGoogle Scholar
  25. 25.
    J. Krc, M. Zeman, O. Kluth, F. Smole, M. Topic, Effect of surface roughness of ZnO:Al films on light scattering in hydrogenated amorphous silicon solar cells. Thin Solid Films 426(1–2), 296–304 (2003) ADSCrossRefGoogle Scholar
  26. 26.
    H. Stiebig, T. Brammer, T. Repmann, O. Kluth, N. Senoussaoui, A. Lambertz, H. Wagner, Light scattering in microcrystalline silicon thin film solar cells, in Proc. 16th EU-PVSEC, 2000, Glasgow (2000), pp. 549–552 Google Scholar
  27. 27.
    G. Brown, V. Celli, M. Haller, A. Maradudin, A. Marvin, Resonant light scattering from a randomly rough surface. Phys. Rev. B 31(8), 4993–5005 (1985) ADSCrossRefGoogle Scholar
  28. 28.
    V. Celli, A.A. Maradudin, A.M. Marvin, A.R. McGurn, Some aspects of light-scattering from a randomly rough metal surface. J. Opt. Soc. Am. A 2(12), 2225–2239 (1985) ADSCrossRefGoogle Scholar
  29. 29.
    J. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, Greenwood Village, 2005) Google Scholar
  30. 30.
    D. Dominé, F.J. Haug, C. Battaglia, C. Ballif, Modeling of light scattering from micro- and nanotextured surfaces. J. Appl. Phys. 107, 044504 (2010) ADSCrossRefGoogle Scholar
  31. 31.
    J. Harvey, C. Vernold, A. Krywonos, P. Thompson, Diffracted radiance: a fundamental quantity in nonparaxial scalar diffraction theory. Appl. Opt. 38, 6469–6481 (1999) ADSCrossRefGoogle Scholar
  32. 32.
    J. Harvey, Fourier treatment of near-field scalar diffraction theory. Am. J. Phys. 47, 974 (1979) ADSCrossRefGoogle Scholar
  33. 33.
    F.J. Haug, C. Battaglia, D. Domine, C. Ballif, Light scattering at nano-textured surfaces in thin film silicon solar cells, in Proc. 35 IEEE PVSC, 2010, Hawaii, IEEE (2010), pp. 754–759 Google Scholar
  34. 34.
    K. Bittkau, M. Schulte, M. Klein, T. Beckers, R. Carius, Modeling of light scattering properties from surface profile in thin-film solar cells by Fourier transform techniques. Thin Solid Films 519(19), 6538–6543 (2011) ADSCrossRefGoogle Scholar
  35. 35.
    C. Rockstuhl, S. Fahr, F. Lederer, F.J. Haug, T. Soderstrom, S. Nicolay, M. Despeisse, C. Ballif, Light absorption in textured thin film silicon solar cells: a simple scalar scattering approach versus rigorous simulation. Appl. Phys. Lett. 98(5), 051102 (2011) ADSCrossRefGoogle Scholar
  36. 36.
    K. Jäger, M. Fischer, R. van Swaaij, M. Zeman, A scattering model for nano-textured interfaces and its application in opto-electrical simulations of thin-film silicon solar cells. J. Appl. Phys. 111, 083108 (2012) ADSCrossRefGoogle Scholar
  37. 37.
    J.E. Harvey, A. Krywonos, A global view of diffraction: revisited, in Proc. SPIE AM100-26, 2004, Denver (2004) Google Scholar
  38. 38.
    M. Schulte, K. Bittkau, K. Jäger, M. Ermes, M. Zeman, B.E. Pieters, Angular resolved scattering by a nano-textured ZnO/silicon interface. Appl. Phys. Lett. 99, 111107 (2011) ADSCrossRefGoogle Scholar
  39. 39.
    D. Dominé, The role of front electrodes and intermediate reflectors in the optoelectronic properties of high-efficiency micromorph solar cells. PhD thesis, University of Neuchatel (2009) Google Scholar
  40. 40.
    E. Yablonovitch, G.D. Cody, Intensity enhancement in textured optical sheets for solar cells. IEEE Trans. Electron Devices 29(2), 300–305 (1982) ADSCrossRefGoogle Scholar
  41. 41.
    H.W. Deckman, C.R. Wronski, H. Witzke, E. Yablonovitch, Optically enhanced amorphous silicon solar cells. Appl. Phys. Lett. 42(11), 968–970 (1983) ADSCrossRefGoogle Scholar
  42. 42.
    P. Sheng, A.N. Bloch, R.S. Stepleman, Wavelength-selective absorption enhancement in thin-film solar cells. Appl. Phys. Lett. 43, 579 (1983) ADSCrossRefGoogle Scholar
  43. 43.
    G. Yue, L. Sivec, B. Yan, J. Yang, S. Guha, High efficiency hydrogeneated nanocrystalline silicon based solar cells deposited by optimized Ag/ZnO back reflectors, in Proc. 25th European PVSEC, 2010, Valencia (2010) Google Scholar
  44. 44.
    J. Bailat, L. Fesquet, J.B. Orhan, Y. Djerdidane, B. Wolf, P. Madlinger, J. Steinhauser, S. Benagli, D. Borrello, L. Castens, G. Monteduro, M. Marmelo, B. Dehbozorghi, E. Vallat-Sauvain, X. Multone, D. Romang, J.F. Boucher, J. Meier, U. Kroll, M. Despeisse, G. Bugnon, C. Ballif, S. Marjanovic, G. Kohnke, N. Borelli, K. Koch, J. Liu, R. Modavis, D. Thelen, S. Vallon, A. Zakharian, D. Weidmann, Recent developments of high-efficiency micromorph tandem solar cells in Kai-M PE-CVD reactors, in Proc. 5th World PVSEC, 2010, Valencia (2010), p. 2720 Google Scholar
  45. 45.
    J.M. Gee, Optically enhanced absorption in thin silicon layers using photonic crystals, in Proc. 29th IEEE PVSC, 2002, New Orleans (2002), pp. 150–153 Google Scholar
  46. 46.
    C. Battaglia, C.M. Hsu, K. Söderström, J. Escarré, F.J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. Alexander, M. Cantoni, Y. Cui, C. Ballif, Light trapping in solar cells: can periodic beat random? ACS Nano 6(3), 185 (2012) CrossRefGoogle Scholar
  47. 47.
    H. Keppner, J. Meier, P. Torres, D. Fischer, A. Shah, Microcrystalline silicon and micromorph tandem solar cells. Appl. Phys. A, Mater. Sci. Process. 69(2), 169–177 (1999) ADSCrossRefGoogle Scholar
  48. 48.
    M. Green, P. Basore, N. Chang, D. Clugston, R. Egan, R. Evans, D. Hogg, S. Jarnason, M. Keevers, P. Lasswell, Crystalline silicon on glass (CSG) thin-film solar cell modules. Sol. Energy 77(6), 857–863 (2004) CrossRefGoogle Scholar
  49. 49.
    J. Bailat, V. Terrazzoni-Daudrix, J. Guillet, F. Freitas, X. Niquille, A. Shah, C. Ballif, T. Scharf, R. Morf, A. Hansen, D. Fischer, Y. Ziegler, A. Closset, Recent development of solar cells on low-cost plastic substrates, in Proc. 20th European PVSEC, 2005, Barcelona (2005) Google Scholar
  50. 50.
    A. Bessonov, Y. Cho, S.J. Jung, E.A. Park, E.S. Hwang, J.W. Lee, M. Shin, S. Lee, Nanoimprint patterning for tunable light trapping in large-area silicon solar cells. Sol. Energy Mater. Solar Cells 95, 2886 (2011) CrossRefGoogle Scholar
  51. 51.
    C. Haase, H. Stiebig, Thin-film silicon solar cells with efficient periodic light trapping texture. Appl. Phys. Lett. 91(6), 061116 (2007) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.École Polytechnique Fédérale de Lausanne (EPFL)Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics LaboratoryNeuchâtelSwitzerland

Personalised recommendations