Amorphous Nanophotonics in Nature

Part of the Nano-Optics and Nanophotonics book series (NON)

Abstract

Visual appearance generates stimuli associated with many biological functions, including interspecies and intra species communication. A range of biological structural colour mechanisms has been identified. These mechanisms include highly periodic microstructures associated with bright and saturated colours, and amorphous structures which produce broadband colours and generally diffuse reflectances. In this chapter several highly functional amorphous structures found in biological systems are detailed, and their optical characteristics are described.

Keywords

Filling Fraction Colour Appearance Optical Scatter White Scale Wing Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P. Vukusic, Optical Interference Coatings, Natural Coatings (Springer, Berlin, 2003) Google Scholar
  2. 2.
    R. Hooke, Micrographia: or some physiological descriptions of minute bodies made by magnifying glasses, in Project Gutenberg (1665) Google Scholar
  3. 3.
    I. Newton, Opticks: Or a Treatise of the Reflexions, Refractions, Inflexions and Colours (Royal Society, London, 1704) Google Scholar
  4. 4.
    L. Rayleigh, On the reflection of light from a regularly stratified medium. Proc. R. Soc. Lond., a Contain. Pap. Math. Phys. Character 93(655), 565–577 (1917) CrossRefADSGoogle Scholar
  5. 5.
    L. Rayleigh, On the optical character of some brilliant animal colours. Philos. Mag. 37(217) (1919). doi: 10.1080/14786440108635867
  6. 6.
    P. Vukusic, J. Sambles, C. Lawrence, R. Wootton, Quantified interference and diffraction in single Morpho butterfly scales. Proc. R. Soc. Lond. B, Biol. Sci. 266(1427), 1403 (1999) CrossRefGoogle Scholar
  7. 7.
    T. Trzeciak, P. Vukusic, Photonic crystal fiber in the polychaete worm pherusa sp. Phys. Rev. E 80(6), 061908 (2009) CrossRefADSGoogle Scholar
  8. 8.
    C. Pouya, D. Stavenga, P. Vukusic, Discovery of ordered and quasi-ordered photonic crystal structures in the scales of the beetle eupholus magnificus. Opt. Express 19(12), 11355–11364 (2011) CrossRefADSGoogle Scholar
  9. 9.
    C. Mason, Structural colors in insects. I. J. Phys. Chem. 30, 383–395 (1926) CrossRefGoogle Scholar
  10. 10.
    H. Ghiradella, Structure of iridescent lepidopteran scales: variations on several themes. Ann. Entomol. Soc. Am. 77(6), 637–645 (1984) Google Scholar
  11. 11.
    H. Ghiradella, Structure of butterfly scales: patterning in an insect cuticle. Microsc. Res. Tech. 27(5), 429–438 (1994) CrossRefGoogle Scholar
  12. 12.
    H. Ghiradella, D. Aneshansley, T. Eisner, R. Silberglied, H. Hinton, Ultraviolet reflection of a male butterfly: interference color caused by thin-layer elaboration of wing scales. Science 178(4066), 1214 (1972) CrossRefADSGoogle Scholar
  13. 13.
    H. Ghiradella, Hairs, bristles, and scales. Microsc. Anat. Invertebr. 11, 257–287 (1998) Google Scholar
  14. 14.
    M. Giraldo, D. Stavenga, Sexual dichroism and pigment localization in the wing scales of Pieris rapae butterflies. Proc. R. Soc. Lond. B, Biol. Sci. 274(1606), 97 (2007) CrossRefGoogle Scholar
  15. 15.
    F. Lutz, ‘Invisible’ colors of flowers and butterflies. Nat. Hist. 33, 565–576 (1933) Google Scholar
  16. 16.
    K. Makino, K. Satoh, M. Koike, N. Ueno, Sex in Pieris Rapae L. and the Pteridin Content of Their Wings (1952) Google Scholar
  17. 17.
    B. Wijnen, H. Leertouwer, D. Stavenga, Colors and pterin pigmentation of pierid butterfly wings. J. Insect Physiol. 53(12), 1206–1217 (2007) CrossRefGoogle Scholar
  18. 18.
    J. Kolyer, A. Reimschuessel, Scanning electron microscopy on wing scales of Colias eurytheme. J. Res. Lepid. 8, 1–15 (1970) Google Scholar
  19. 19.
    N. Morehouse, P. Vukusic, R. Rutowski, Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies. Proc. R. Soc. Lond. B, Biol. Sci. 274(1608), 359 (2007) CrossRefGoogle Scholar
  20. 20.
    N. Yagi, Note of electron microscope research on pterin pigmentation in pierid butterflies. Annot. Zool. Jpn. 27, 113–114 (1954) Google Scholar
  21. 21.
    R. Rutowski, J. Macedonia, N. Morehouse, L. Taylor-Taft, Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme. Proc. R. Soc. B 272(1578), 2329 (2005) CrossRefGoogle Scholar
  22. 22.
    D. Stavenga, S. Stowe, K. Siebke, J. Zeil, K. Arikawa, Butterfly wing colours: scale beads make white pierid wings brighter. Proc. R. Soc. Lond. B, Biol. Sci. 271(1548), 1577 (2004) CrossRefGoogle Scholar
  23. 23.
    P. Kubelka, F. Munk, Ein beitrag zur optik der farbanstriche. Z. Tech. Phys. 12, 593–601 (1931) Google Scholar
  24. 24.
    S. Luke, P. Vukusic, B. Hallam, Measuring and modelling optical scattering and the colour quality of white pierid butterfly scales. Opt. Express 17(17), 14729–14743 (2009) CrossRefADSGoogle Scholar
  25. 25.
    Y. Obara, Studies on the mating behavior of the white cabbage butterfly, Pieris rapae crucivora Boisduval. J. Comp. Physiol. A: Neuroethol. Sens. Neural Behav. Physiol. 69(1), 99–116 (1970) MathSciNetGoogle Scholar
  26. 26.
    R. Rutowski, The use of visual cues in sexual and species discrimination by males of the small sulphur butterfly Eurema lisa (lepidoptera, pieridae). J. Comp. Physiol. A: Neuroethol. Sens. Neural Behav. Physiol. 115(1), 61–74 (1977) CrossRefGoogle Scholar
  27. 27.
    Y. Obara, M. Majerus, Initial mate recognition in the British cabbage butterfly, Pieris rapae rapae. Zool. Sci. 17(6), 725–730 (2000) CrossRefGoogle Scholar
  28. 28.
    D. Kemp, P. Vukusic, R. Rutowski, Stress-mediated covariance between nano-structural architecture and ultraviolet butterfly coloration. Ecology 20, 282–289 (2006) Google Scholar
  29. 29.
    S. Kinoshita, S. Yoshioka, K. Kawagoe, Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale. Proc. R. Soc. Lond. B, Biol. Sci. 269(1499), 1417 (2002) CrossRefGoogle Scholar
  30. 30.
    S. Yoshioka, S. Kinoshita, Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly. Proc. R. Soc. Lond. B, Biol. Sci. 273(1583), 129 (2006) CrossRefGoogle Scholar
  31. 31.
    A. Parker, D. Mckenzie, M. Large, Multilayer reflectors in animals using green and gold beetles as contrasting examples. J. Exp. Biol. 201(9), 1307 (1998) Google Scholar
  32. 32.
    J. Vigneron, J. Colomer, N. Vigneron, V. Lousse, Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera). Phys. Rev. E 72(6), 61904 (2005) CrossRefADSGoogle Scholar
  33. 33.
    A. Seago, P. Brady, J. Vigneron, T. Schultz, Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera). J. R. Soc. Interface 6(suppl 2) (2009). doi: 10.1098/rsif.2008.0354.focus
  34. 34.
    T. Anderson, A. Richards Jr, An electron microscope study of some structural colors of insects. J. Appl. Phys. 13, 748 (1942) CrossRefADSGoogle Scholar
  35. 35.
    C. Mason, Structural colors in insects. II. J. Phys. Chem. 31(3), 321–354 (1927) CrossRefGoogle Scholar
  36. 36.
    A. Parker, V. Welch, D. Driver, N. Martini, Structural colour: opal analogue discovered in a weevil. Nature 426(6968), 786–787 (2003) CrossRefADSGoogle Scholar
  37. 37.
    V. Welch, J. Vigneron, Beyond butterflies—the diversity of biological photonic crystals. Opt. Quantum Electron. 39(4), 295–303 (2007) CrossRefGoogle Scholar
  38. 38.
    P. Vukusic, R. Kelly, I. Hooper, A biological sub-micron thickness optical broadband reflector characterized using both light and microwaves. J. R. Soc. Interface 6(Suppl 2), S193 (2009) CrossRefGoogle Scholar
  39. 39.
    M. Srinivasarao, Nano-optics in the biological world: beetles, butterflies, birds, and moths. Chem. Rev. 99(7), 1935–1962 (1999) CrossRefGoogle Scholar
  40. 40.
    T. Hariyama, M. Hironaka, H. Horiguchi, D.G. Stavenga, The leaf beetle, the jewel beetle and the damselfly; insects with a multilayers show case, in Structural Colors in Biological Systems: Principles and Applications (Osaka University Press, Osaka, 2005) Google Scholar
  41. 41.
    P. Vukusic, B. Hallam, J. Noyes, Brilliant whiteness in ultrathin beetle scales. Science 315(5810), 348 (2007) CrossRefADSGoogle Scholar
  42. 42.
    F. Steig, Ending the ‘crowding/spacing theory’ debate. J. Coat. Technol. 59, 96–97 (1987) Google Scholar
  43. 43.
    J. Braun, Crowding and spacing of titanium dioxide pigments. J. Coat. Technol. 60(758), 67–71 (1988) ADSGoogle Scholar
  44. 44.
    S. Luke, B. Hallam, P. Vukusic, Structural optimization for broadband scattering in several ultra-thin white beetle scales. Appl. Opt. 49(22), 4246–4254 (2010) CrossRefADSGoogle Scholar
  45. 45.
    S. Doucet, M. Meadows, Iridescence: a functional perspective. J. R. Soc. Interface 6(Suppl 2), S115 (2009) CrossRefGoogle Scholar
  46. 46.
    N. Hadley, A. Savill, T. Schultz, Coloration and its thermal consequences in the New Zealand tiger beetle Neocicindela perhispida. J. Therm. Biol. 17(1), 55–61 (1992) CrossRefGoogle Scholar
  47. 47.
    J. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. Biró, D. Ertz, V. Lousse, Optical structure and function of the white filamentary hair covering the edelweiss bracts. Phys. Rev. E 71(1), 011906 (2005) CrossRefADSGoogle Scholar
  48. 48.
    E. Denton, M. Land, Mechanism of reflexion in silvery layers of fish and cephalopods. Proc. R. Soc. Lond. B, Biol. Sci. 178(1050), 43–61 (1971) CrossRefADSGoogle Scholar
  49. 49.
    D. McKenzie, Y. Yin, W. McFall, Silvery fish skin as an example of a chaotic reflector. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 451(1943), 579 (1995) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of PhysicsUniversity of ExeterExeterUK

Personalised recommendations