Bottom-up Organisation of Metallic Nanoparticles

  • Alastair Cunningham
  • Thomas Bürgi
Part of the Nano-Optics and Nanophotonics book series (NON)


This chapter deals with bottom-up strategies that allow one to prepare amorphous assemblies of metal nanoparticles. Within these assemblies the nanoparticles couple to each other, affecting the effective electromagnetic properties of the materials. As a consequence, besides the properties of the individual particles, parameters such as number of individual particles within the assembly, geometry of the assembly and average distance between particles within the assembly can be used to design the optical properties of a material. It is therefore highly desirable to control these parameters with high precision, which is the art of self-assembly. Compared to top-down lithographic methods the bottom-up self-assembly approach is cheap and enables the fabrication of large area two-dimensional or three-dimensional samples, making it attractive for applications. In the following, after an introduction, different strategies that were used in the past to assemble nanoparticles into defined structures are briefly discussed. Such strategies rely on templates such as liquid crystals, DNA or surfactants. A versatile approach, which relies on charge-driven self-assembly mediated by charged surfaces and polyelectrolytes, is then discussed in more detail. This approach easily allows one to build large scale amorphous layered structures of nanoparticles with high control of parameters such as distance between particles within one layer and distance between the layers. The method is not restricted to flat surfaces and can be used to coat for example silica beads, resulting in core–shell structures. An attempt has also made to rationalise the observed optical properties in terms of coupling between particles within the different assemblies, thus paving the way to the design of materials with novel electromagnetic properties.


Gold Nanoparticles Surface Enhance Raman Scattering Localise Surface Plasmon Resonance Metallic Nanoparticles Gold Nanorods 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support from the University of Geneva and the European Union FP7 (project NANOGOLD) is kindly acknowledged.


  1. 1.
    C. Lok, Nanotechnology: small wonders. Nature 467(7311), 18–21 (2010) CrossRefGoogle Scholar
  2. 2.
    R.P. Feynman, There’s plenty of room at the bottom. CALTECH Eng. Sci. 23(5), 22–36 (1960) Google Scholar
  3. 3.
    S.E. Thompson, S. Parthasarathy, Moore’s law: the future of Si microelectronics. Mater. Today 9(6), 20–25 (2006) CrossRefGoogle Scholar
  4. 4.
    X. Li et al., Solar cells and light sensors based on nanoparticle-grafted carbon nanotube films. ACS Nano 4(4), 2142–2148 (2010) CrossRefGoogle Scholar
  5. 5.
    E. Boisselier et al., How to very efficiently functionalize gold nanoparticles by “click” chemistry. Chem. Commun. 2008(44), 5788–5790 (2008) CrossRefGoogle Scholar
  6. 6.
    M. Shimomura, T. Sawadaishi, Bottom-up strategy of materials fabrication: a new trend in nanotechnology of soft materials. Curr. Opin. Colloid Interface Sci. 6(1), 11–16 (2001) CrossRefGoogle Scholar
  7. 7.
    C. Acikgoz et al., Polymers in conventional and alternative lithography for the fabrication of nanostructures. Eur. Polym. J. 47(11), 2033–2052 (2011) CrossRefGoogle Scholar
  8. 8.
    M. Zhu et al., Structural and optical characteristics of silicon nanowires fabricated by wet chemical etching. Chem. Phys. Lett. 511(1–3), 106–109 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    S. Reyntjens, R. Puers, A review of focused ion beam applications in microsystem technology. J. Micromech. Microeng. 11(4), 287 (2001) ADSCrossRefGoogle Scholar
  10. 10.
    H. Zeng et al., Nanomaterials via laser Ablation/Irradiation in liquid: a review. Adv. Funct. Mater. 22(7), 1333–1353 (2012) CrossRefGoogle Scholar
  11. 11.
    N.J. Halas, Plasmonics: an emerging field fostered by nano letters. Nano Lett. 10(10), 3816–3822 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    R. Gans, Form of ultramicroscopic particles of silver. Ann. Phys. 47, 270 (1915) CrossRefGoogle Scholar
  13. 13.
    R. Wilson, The use of gold nanoparticles in diagnostics and detection. Chem. Soc. Rev. 37(9), 2028–2045 (2008) CrossRefGoogle Scholar
  14. 14.
    M.E. Stewart et al., Nanostructured plasmonic sensors. Chem. Rev. 108(2), 494–521 (2008) CrossRefGoogle Scholar
  15. 15.
    M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26(2), 163–166 (1974) ADSCrossRefGoogle Scholar
  16. 16.
    N.J. Halas et al., Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111(6), 3913–3961 (2011) CrossRefGoogle Scholar
  17. 17.
    G.R. Souza et al., In vivo detection of gold-imidazole self-assembly complexes: NIR-SERS signal reporters. Anal. Chem. 78(17), 6232–6237 (2006) CrossRefGoogle Scholar
  18. 18.
    J.M. Romo-Herrera, R.A. Alvarez-Puebla, L.M. Liz-Marzan, Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale 3, 1304–1315 (2011) ADSCrossRefGoogle Scholar
  19. 19.
    R. Jin, Nanoparticle Clusters Light Up in SERS. Angewandte Chemie International Edition 49(16), 2826–2829 (2010) CrossRefGoogle Scholar
  20. 20.
    W. Page Faulk, G. Malcolm Taylor, Communication to the editors: an immunocolloid method for the electron microscope. Immunochemistry 8(11), 1081–1083 (1971) CrossRefGoogle Scholar
  21. 21.
    R.A. Sperling et al., Biological applications of gold nanoparticles. Chem. Soc. Rev. 37(9), 1896–1908 (2008) CrossRefGoogle Scholar
  22. 22.
    Q. Wei, J. Ji, J. Shen, Synthesis of near-infrared responsive gold nanorod/PNIPAAm core/shell nanohybrids via surface initiated ATRP for smart drug delivery. Macromol. Rapid Commun. 29, 645–650 (2008) CrossRefGoogle Scholar
  23. 23.
    D.A. Giljohann et al., Gold nanoparticles for biology and medicine. Angew. Chem., Int. Ed. 49(19), 3280–3294 (2010) CrossRefGoogle Scholar
  24. 24.
    E.C. Dreaden et al., Beating cancer in multiple ways using nanogold. Chem. Soc. Rev. 40(7), 3391–3404 (2011) CrossRefGoogle Scholar
  25. 25.
    C. Sonnichsen et al., A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 23(6), 741–745 (2005) CrossRefGoogle Scholar
  26. 26.
    M. Chen, D.W. Goodman, Catalytically active gold on ordered titania supports. Chem. Soc. Rev. 37(9), 1860–1870 (2008) CrossRefGoogle Scholar
  27. 27.
    J.R. Adleman et al., Heterogenous catalysis mediated by plasmon heating. Nano Lett. 9(12), 4417–4423 (2009) ADSCrossRefGoogle Scholar
  28. 28.
    H. Nabika et al., Toward plasmon-induced photoexcitation of molecules. J. Phys. Chem. Lett. 1(16), 2470–2487 (2010) CrossRefGoogle Scholar
  29. 29.
    C.J. Chen, R.M. Osgood, Direct observation of the local-field-enhanced surface photochemical reactions. Phys. Rev. Lett. 50(21), 1705–1708 (1983) ADSCrossRefGoogle Scholar
  30. 30.
    T. Arakawa et al., Effects of silver nanoparticles on photoelectrochemical responses of organic dyes. J. Phys. Chem. C 113(27), 11830–11835 (2009) CrossRefGoogle Scholar
  31. 31.
    D.R. Smith et al., Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184–4187 (2000) ADSCrossRefGoogle Scholar
  32. 32.
    R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292(5514), 77–79 (2001) ADSCrossRefGoogle Scholar
  33. 33.
    D. Rainwater et al., Experimental verification of three-dimensional plasmonic cloaking in free-space. New J. Phys. 14(1), 013054 (2012) ADSCrossRefGoogle Scholar
  34. 34.
    A. Grbic, G.V. Eleftheriades, Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys. Rev. Lett. 92(11), 117403 (2004) ADSCrossRefGoogle Scholar
  35. 35.
    E. Prodan et al., A hybridization model for the plasmon response of complex nanostructures. Science 302(5644), 419–422 (2003) ADSCrossRefGoogle Scholar
  36. 36.
    A. Cunningham et al., Coupling of plasmon resonances in tunable layered arrays of gold nanoparticles. J. Phys. Chem. C 115(18), 8955–8960 (2011) CrossRefGoogle Scholar
  37. 37.
    X. Zeng, 3D ordered gold strings by coating nanoparticles with mesogens. Adv. Mater. 21, 1746 (2009) CrossRefGoogle Scholar
  38. 38.
    H. Qi et al., Effects of hydrophilic and hydrophobic gold nanoclusters on the stability and ordering of bolaamphiphilic liquid crystals. J. Mater. Chem. 17(20), 2139–2144 (2007) CrossRefGoogle Scholar
  39. 39.
    R. Pratibha, W. Park, I.I. Smalyukh, Colloidal gold nanosphere dispersions in smectic liquid crystals and thin nanoparticle-decorated smectic films. J. Appl. Phys. 107(6), 063511 (2010) ADSCrossRefGoogle Scholar
  40. 40.
    A.P. Alivisatos et al., Organization of ‘nanocrystal molecules’ using DNA. Nature 382(6592), 609–611 (1996) ADSCrossRefGoogle Scholar
  41. 41.
    D.D.-K. Lim, Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat. Mater. 9(1), 60 (2010) ADSCrossRefGoogle Scholar
  42. 42.
    C.-L. Chen, P. Zhang, N.L. Rosi, A new peptide-based method for the design and synthesis of nanoparticle superstructures: construction of highly ordered gold nanoparticle double helices. J. Am. Chem. Soc. 130(41), 13555–13557 (2008) CrossRefGoogle Scholar
  43. 43.
    Nie et al., “Supramolecular” assembly of gold nanorods end-terminated with polymer “pom-poms”: effect of pom-pom structure on the association modes. J. Am. Chem. Soc. 130(11), 3683–3689 (2008) CrossRefGoogle Scholar
  44. 44.
    P.K. Jain, S. Eustis, M.A. El-Sayed, Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J. Phys. Chem. B 110(37), 18243–18253 (2006) CrossRefGoogle Scholar
  45. 45.
    E.V. Shevchenko et al., Structural Diversity in Binary Nanoparticle Superlattices (Nature Publishing Group, London, 2006), pp. 55–59 Google Scholar
  46. 46.
    X. Wang et al., Polymer-encapsulated gold-nanoparticle dimers: facile preparation and catalytical application in guided growth of dimeric ZnO-nanowires. Nano Lett. 8(9), 2643–2647 (2008) ADSCrossRefGoogle Scholar
  47. 47.
    C. Rockstuhl et al., Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum. Phys. Rev. Lett. 99(1), 017401 (2007) ADSCrossRefGoogle Scholar
  48. 48.
    N. Shalkevich et al., Reversible formation of gold nanoparticle-surfactant composite assemblies for the preparation of concentrated colloidal solutions. Phys. Chem. Chem. Phys. 11(43), 10175–10179 (2009) CrossRefGoogle Scholar
  49. 49.
    S. Mühlig et al., Optical properties of a fabricated self-assembled bottom-up bulk metamaterial. Opt. Express 19(10), 9607–9616 (2011) ADSCrossRefGoogle Scholar
  50. 50.
    J.H. Lee, Q. Wu, W. Park, Metal nanocluster metamaterial fabricated by the colloidal self-assembly. Opt. Lett. 34(4), 443–445 (2009) ADSCrossRefGoogle Scholar
  51. 51.
    V. Myroshnychenko et al., Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 37(9), 1792–1805 (2008) CrossRefGoogle Scholar
  52. 52.
    I. Freestone, The lycurgus cup—a Roman nanotechnology. Gold Bull. 40(4), 270–277 (2007) CrossRefGoogle Scholar
  53. 53.
    M. Faraday, The bakerian lecture: experimental relations of gold (and other metals) to light. Philos. Trans. R. Soc. Lond. 147, 145–181 (1857) CrossRefGoogle Scholar
  54. 54.
    M. Brust et al., Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc., Chem. Commun. 7, 801–802 (1994) CrossRefGoogle Scholar
  55. 55.
    S.J. Tan et al., Building plasmonic nanostructures with DNA. Nat. Nanotechnol. 6(5), 268–276 (2011) ADSCrossRefGoogle Scholar
  56. 56.
    M. Rycenga et al., Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111(6), 3669–3712 (2011) CrossRefGoogle Scholar
  57. 57.
    L. Jiang et al., Patterning of plasmonic nanoparticles into multiplexed one-dimensional arrays based on spatially modulated electrostatic potential. ACS Nano 5(10), 8288–8294 (2011) CrossRefGoogle Scholar
  58. 58.
    J.K. Gansel et al., Gold helix photonic metamaterial as broadband circular polarizer. Science 325(5947), 1513–1515 (2009) ADSCrossRefGoogle Scholar
  59. 59.
    C.M. Soukoulis, M. Wegener, Optical metamaterials—more bulky and less lossy. Science 330(6011), 1633–1634 (2010) ADSCrossRefGoogle Scholar
  60. 60.
    K.L. Kelly et al., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107(3), 668–677 (2002) CrossRefGoogle Scholar
  61. 61.
    J. Schmitt et al., Metal nanoparticle/polymer superlattice films: fabrication and control of layer structure. Adv. Mater. 9(1), 61–65 (1997) ADSCrossRefGoogle Scholar
  62. 62.
    Z. Feng, F. Yan, Preparation and tribological studies of nanocomposite films fabricated using spin-assisted layer-by-layer assembly. Surf. Coat. Technol. 202(14), 3290–3297 (2008) CrossRefGoogle Scholar
  63. 63.
    B.V. Enustun, J. Turkevich, Coagulation of colloidal gold. J. Am. Chem. Soc. 85(21), 3317–3328 (1963) CrossRefGoogle Scholar
  64. 64.
    J. Kimling et al., Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B 110(32), 15700–15707 (2006) CrossRefGoogle Scholar
  65. 65.
    R.K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and the Biochemistry (Wiley, New York, 1979) Google Scholar
  66. 66.
    M.D. Abràmoff, P.J. Magalhães, S.J. Ram, Image processing with image. J. Biophotonics Int. 7, 7 (2004) Google Scholar
  67. 67.
    J. Dintinger et al., A bottom-up approach to fabricate optical metamaterials by self-assembled metallic nanoparticles. Opt. Mater. Express 2(3), 269–278 (2012) CrossRefGoogle Scholar
  68. 68.
    D.J. Shaw, Introduction to Colloid and Surface Chemistry (Elsevier, Amsterdam, 1989) Google Scholar
  69. 69.
    J.C. Love et al., Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105(4), 1103–1170 (2005) CrossRefGoogle Scholar
  70. 70.
    S.D.T. Brown, B.F.G. Johnson, Nucleation and growth of nano-gold colloidal lattices. Chem. Commun. 11, 1007–1008 (1997) CrossRefGoogle Scholar
  71. 71.
    G. Decher, Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330), 1232–1237 (1997) CrossRefGoogle Scholar
  72. 72.
    P. Lavalle et al., Dynamic aspects of films prepared by a sequential deposition of species: perspectives for smart and responsive materials. Adv. Mater. 23(10), 1191–1221 (2011) CrossRefGoogle Scholar
  73. 73.
    A. Tronin, Ellipsometry and x-ray reflectometry characterization of self-assembly process of polystyrensulfonate and polyallylamine. Colloid Polym. Sci. 272, 1317–1321 (1994) CrossRefGoogle Scholar
  74. 74.
    X. Chen et al., Langmuir–Blodgett patterning: a bottom–up way to build mesostructures over large areas. Acc. Chem. Res. 40(6), 393–401 (2007) CrossRefGoogle Scholar
  75. 75.
    A.M. Funston et al., Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett. 9(4), 1651–1658 (2009) ADSCrossRefGoogle Scholar
  76. 76.
    G.A. Ozin, A.C. Arsenault, Nanochemistry—A Chemical Approach to Nanomaterials (RSC Publishing, Cambridge, 2005) Google Scholar
  77. 77.
    A. Christ et al., Symmetry breaking in a plasmonic metamaterial at optical wavelength. Nano Lett. 8(8), 2171–2175 (2008) ADSCrossRefGoogle Scholar
  78. 78.
    C.R. Simovski, S.A. Tretyakov, Model of isotropic resonant magnetism in the visible range based on core–shell clusters. Phys. Rev. B 79(4), 045111 (2009) ADSCrossRefGoogle Scholar
  79. 79.
    S. Mühlig et al., Self-assembled plasmonic core–shell clusters with an isotropic magnetic dipole response in the visible range. ACS Nano 5(8), 6586–6592 (2011) CrossRefGoogle Scholar
  80. 80.
    S. Mühlig et al., Cloaking dielectric spherical objects by a shell of metallic nanoparticles. Phys. Rev. B 83(19), 195116 (2011) ADSCrossRefGoogle Scholar
  81. 81.
    O. Peña-Rodríguez et al., Enhanced Fano resonance in asymmetrical Au: Ag heterodimers. J. Phys. Chem. C (2011) Google Scholar
  82. 82.
    G. Bachelier et al., Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles. Phys. Rev. Lett. 101(19), 197401 (2008) ADSCrossRefGoogle Scholar
  83. 83.
    E.R. Encina, E.A. Coronado, On the far field optical properties of Ag-Au nanosphere pairs. J. Phys. Chem. C 114(39), 16278–16284 (2010) CrossRefGoogle Scholar
  84. 84.
    L.V. Brown et al., Heterodimers: plasmonic properties of mismatched nanoparticle pairs. ACS Nano 4(2), 819–832 (2010) CrossRefGoogle Scholar
  85. 85.
    P.C. Lee, D. Meisel, Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 86(17), 3391–3395 (1982) CrossRefGoogle Scholar
  86. 86.
    C. Rockstuhl et al., Scattering properties of meta-atoms. Phys. Rev. B 83(24), 245119 (2011) ADSCrossRefGoogle Scholar
  87. 87.
    S. Mühlig et al., Multipole analysis of meta-atoms. Metamaterials 5(2–3), 64–73 (2011) ADSCrossRefGoogle Scholar
  88. 88.
    F. Caruso et al., Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates. Adv. Mater. 13(14), 1090–1094 (2001) CrossRefGoogle Scholar
  89. 89.
    B. Sadtler, A. Wei, Spherical ensembles of gold nanoparticles on silica: electrostatic and size effects. Chem. Commun. 15, 1604–1605 (2002) CrossRefGoogle Scholar
  90. 90.
    I. Pastoriza-Santos et al., Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach. Phys. Chem. Chem. Phys. 6(21), 5056–5060 (2004) CrossRefGoogle Scholar
  91. 91.
    J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966–3969 (2000) ADSCrossRefGoogle Scholar
  92. 92.
    U. Leonhardt, T.G. Philbin, Transformation optics and the geometry of light, in Progress in Optics, ed. by E. Wolf, 1st edn. (Elsevier, Amsterdam, 2009) Google Scholar
  93. 93.
    C. Enkrich et al., Magnetic metamaterials at telecommunication and visible frequencies. Phys. Rev. Lett. 95(20), 203901 (2005) ADSCrossRefGoogle Scholar
  94. 94.
    J. Valentine et al., Three-dimensional optical metamaterial with a negative refractive index. Nature 455(7211), 376–379 (2008) ADSCrossRefGoogle Scholar
  95. 95.
    A.F. Koenderink, Plasmon nanoparticle array waveguides for single photon and single plasmon sources. Nano Lett. 9(12), 4228–4233 (2009) ADSCrossRefGoogle Scholar
  96. 96.
    A. Manjavacas, F.J. Garcí a de Abajo, Robust plasmon waveguides in strongly interacting nanowire arrays. Nano Lett. 9(4), 1285–1289 (2008) ADSCrossRefGoogle Scholar
  97. 97.
    N. Engheta, Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317(5845), 1698–1702 (2007) ADSCrossRefGoogle Scholar
  98. 98.
    K. Li, M.I. Stockman, D.J. Bergman, Self-similar chain of metal nanospheres as an efficient nanolens. Phys. Rev. Lett. 91(22), 227402 (2003) ADSCrossRefGoogle Scholar
  99. 99.
    M. Karg et al., Nanorod-coated PNIPAM microgels: thermoresponsive optical properties. Small 3(7), 1222–1229 (2007) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Département de Chimie PhysiqueGenève 4Switzerland

Personalised recommendations