Skip to main content

Bottom-up Organisation of Metallic Nanoparticles

  • Chapter

Part of the book series: Nano-Optics and Nanophotonics ((NON))

Abstract

This chapter deals with bottom-up strategies that allow one to prepare amorphous assemblies of metal nanoparticles. Within these assemblies the nanoparticles couple to each other, affecting the effective electromagnetic properties of the materials. As a consequence, besides the properties of the individual particles, parameters such as number of individual particles within the assembly, geometry of the assembly and average distance between particles within the assembly can be used to design the optical properties of a material. It is therefore highly desirable to control these parameters with high precision, which is the art of self-assembly. Compared to top-down lithographic methods the bottom-up self-assembly approach is cheap and enables the fabrication of large area two-dimensional or three-dimensional samples, making it attractive for applications. In the following, after an introduction, different strategies that were used in the past to assemble nanoparticles into defined structures are briefly discussed. Such strategies rely on templates such as liquid crystals, DNA or surfactants. A versatile approach, which relies on charge-driven self-assembly mediated by charged surfaces and polyelectrolytes, is then discussed in more detail. This approach easily allows one to build large scale amorphous layered structures of nanoparticles with high control of parameters such as distance between particles within one layer and distance between the layers. The method is not restricted to flat surfaces and can be used to coat for example silica beads, resulting in core–shell structures. An attempt has also made to rationalise the observed optical properties in terms of coupling between particles within the different assemblies, thus paving the way to the design of materials with novel electromagnetic properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C. Lok, Nanotechnology: small wonders. Nature 467(7311), 18–21 (2010)

    Article  Google Scholar 

  2. R.P. Feynman, There’s plenty of room at the bottom. CALTECH Eng. Sci. 23(5), 22–36 (1960)

    Google Scholar 

  3. S.E. Thompson, S. Parthasarathy, Moore’s law: the future of Si microelectronics. Mater. Today 9(6), 20–25 (2006)

    Article  Google Scholar 

  4. X. Li et al., Solar cells and light sensors based on nanoparticle-grafted carbon nanotube films. ACS Nano 4(4), 2142–2148 (2010)

    Article  Google Scholar 

  5. E. Boisselier et al., How to very efficiently functionalize gold nanoparticles by “click” chemistry. Chem. Commun. 2008(44), 5788–5790 (2008)

    Article  Google Scholar 

  6. M. Shimomura, T. Sawadaishi, Bottom-up strategy of materials fabrication: a new trend in nanotechnology of soft materials. Curr. Opin. Colloid Interface Sci. 6(1), 11–16 (2001)

    Article  Google Scholar 

  7. C. Acikgoz et al., Polymers in conventional and alternative lithography for the fabrication of nanostructures. Eur. Polym. J. 47(11), 2033–2052 (2011)

    Article  Google Scholar 

  8. M. Zhu et al., Structural and optical characteristics of silicon nanowires fabricated by wet chemical etching. Chem. Phys. Lett. 511(1–3), 106–109 (2011)

    Article  ADS  Google Scholar 

  9. S. Reyntjens, R. Puers, A review of focused ion beam applications in microsystem technology. J. Micromech. Microeng. 11(4), 287 (2001)

    Article  ADS  Google Scholar 

  10. H. Zeng et al., Nanomaterials via laser Ablation/Irradiation in liquid: a review. Adv. Funct. Mater. 22(7), 1333–1353 (2012)

    Article  Google Scholar 

  11. N.J. Halas, Plasmonics: an emerging field fostered by nano letters. Nano Lett. 10(10), 3816–3822 (2010)

    Article  ADS  Google Scholar 

  12. R. Gans, Form of ultramicroscopic particles of silver. Ann. Phys. 47, 270 (1915)

    Article  Google Scholar 

  13. R. Wilson, The use of gold nanoparticles in diagnostics and detection. Chem. Soc. Rev. 37(9), 2028–2045 (2008)

    Article  Google Scholar 

  14. M.E. Stewart et al., Nanostructured plasmonic sensors. Chem. Rev. 108(2), 494–521 (2008)

    Article  Google Scholar 

  15. M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26(2), 163–166 (1974)

    Article  ADS  Google Scholar 

  16. N.J. Halas et al., Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111(6), 3913–3961 (2011)

    Article  Google Scholar 

  17. G.R. Souza et al., In vivo detection of gold-imidazole self-assembly complexes: NIR-SERS signal reporters. Anal. Chem. 78(17), 6232–6237 (2006)

    Article  Google Scholar 

  18. J.M. Romo-Herrera, R.A. Alvarez-Puebla, L.M. Liz-Marzan, Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale 3, 1304–1315 (2011)

    Article  ADS  Google Scholar 

  19. R. Jin, Nanoparticle Clusters Light Up in SERS. Angewandte Chemie International Edition 49(16), 2826–2829 (2010)

    Article  Google Scholar 

  20. W. Page Faulk, G. Malcolm Taylor, Communication to the editors: an immunocolloid method for the electron microscope. Immunochemistry 8(11), 1081–1083 (1971)

    Article  Google Scholar 

  21. R.A. Sperling et al., Biological applications of gold nanoparticles. Chem. Soc. Rev. 37(9), 1896–1908 (2008)

    Article  Google Scholar 

  22. Q. Wei, J. Ji, J. Shen, Synthesis of near-infrared responsive gold nanorod/PNIPAAm core/shell nanohybrids via surface initiated ATRP for smart drug delivery. Macromol. Rapid Commun. 29, 645–650 (2008)

    Article  Google Scholar 

  23. D.A. Giljohann et al., Gold nanoparticles for biology and medicine. Angew. Chem., Int. Ed. 49(19), 3280–3294 (2010)

    Article  Google Scholar 

  24. E.C. Dreaden et al., Beating cancer in multiple ways using nanogold. Chem. Soc. Rev. 40(7), 3391–3404 (2011)

    Article  Google Scholar 

  25. C. Sonnichsen et al., A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 23(6), 741–745 (2005)

    Article  Google Scholar 

  26. M. Chen, D.W. Goodman, Catalytically active gold on ordered titania supports. Chem. Soc. Rev. 37(9), 1860–1870 (2008)

    Article  Google Scholar 

  27. J.R. Adleman et al., Heterogenous catalysis mediated by plasmon heating. Nano Lett. 9(12), 4417–4423 (2009)

    Article  ADS  Google Scholar 

  28. H. Nabika et al., Toward plasmon-induced photoexcitation of molecules. J. Phys. Chem. Lett. 1(16), 2470–2487 (2010)

    Article  Google Scholar 

  29. C.J. Chen, R.M. Osgood, Direct observation of the local-field-enhanced surface photochemical reactions. Phys. Rev. Lett. 50(21), 1705–1708 (1983)

    Article  ADS  Google Scholar 

  30. T. Arakawa et al., Effects of silver nanoparticles on photoelectrochemical responses of organic dyes. J. Phys. Chem. C 113(27), 11830–11835 (2009)

    Article  Google Scholar 

  31. D.R. Smith et al., Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184–4187 (2000)

    Article  ADS  Google Scholar 

  32. R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292(5514), 77–79 (2001)

    Article  ADS  Google Scholar 

  33. D. Rainwater et al., Experimental verification of three-dimensional plasmonic cloaking in free-space. New J. Phys. 14(1), 013054 (2012)

    Article  ADS  Google Scholar 

  34. A. Grbic, G.V. Eleftheriades, Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys. Rev. Lett. 92(11), 117403 (2004)

    Article  ADS  Google Scholar 

  35. E. Prodan et al., A hybridization model for the plasmon response of complex nanostructures. Science 302(5644), 419–422 (2003)

    Article  ADS  Google Scholar 

  36. A. Cunningham et al., Coupling of plasmon resonances in tunable layered arrays of gold nanoparticles. J. Phys. Chem. C 115(18), 8955–8960 (2011)

    Article  Google Scholar 

  37. X. Zeng, 3D ordered gold strings by coating nanoparticles with mesogens. Adv. Mater. 21, 1746 (2009)

    Article  Google Scholar 

  38. H. Qi et al., Effects of hydrophilic and hydrophobic gold nanoclusters on the stability and ordering of bolaamphiphilic liquid crystals. J. Mater. Chem. 17(20), 2139–2144 (2007)

    Article  Google Scholar 

  39. R. Pratibha, W. Park, I.I. Smalyukh, Colloidal gold nanosphere dispersions in smectic liquid crystals and thin nanoparticle-decorated smectic films. J. Appl. Phys. 107(6), 063511 (2010)

    Article  ADS  Google Scholar 

  40. A.P. Alivisatos et al., Organization of ‘nanocrystal molecules’ using DNA. Nature 382(6592), 609–611 (1996)

    Article  ADS  Google Scholar 

  41. D.D.-K. Lim, Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat. Mater. 9(1), 60 (2010)

    Article  ADS  Google Scholar 

  42. C.-L. Chen, P. Zhang, N.L. Rosi, A new peptide-based method for the design and synthesis of nanoparticle superstructures: construction of highly ordered gold nanoparticle double helices. J. Am. Chem. Soc. 130(41), 13555–13557 (2008)

    Article  Google Scholar 

  43. Nie et al., “Supramolecular” assembly of gold nanorods end-terminated with polymer “pom-poms”: effect of pom-pom structure on the association modes. J. Am. Chem. Soc. 130(11), 3683–3689 (2008)

    Article  Google Scholar 

  44. P.K. Jain, S. Eustis, M.A. El-Sayed, Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J. Phys. Chem. B 110(37), 18243–18253 (2006)

    Article  Google Scholar 

  45. E.V. Shevchenko et al., Structural Diversity in Binary Nanoparticle Superlattices (Nature Publishing Group, London, 2006), pp. 55–59

    Google Scholar 

  46. X. Wang et al., Polymer-encapsulated gold-nanoparticle dimers: facile preparation and catalytical application in guided growth of dimeric ZnO-nanowires. Nano Lett. 8(9), 2643–2647 (2008)

    Article  ADS  Google Scholar 

  47. C. Rockstuhl et al., Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum. Phys. Rev. Lett. 99(1), 017401 (2007)

    Article  ADS  Google Scholar 

  48. N. Shalkevich et al., Reversible formation of gold nanoparticle-surfactant composite assemblies for the preparation of concentrated colloidal solutions. Phys. Chem. Chem. Phys. 11(43), 10175–10179 (2009)

    Article  Google Scholar 

  49. S. Mühlig et al., Optical properties of a fabricated self-assembled bottom-up bulk metamaterial. Opt. Express 19(10), 9607–9616 (2011)

    Article  ADS  Google Scholar 

  50. J.H. Lee, Q. Wu, W. Park, Metal nanocluster metamaterial fabricated by the colloidal self-assembly. Opt. Lett. 34(4), 443–445 (2009)

    Article  ADS  Google Scholar 

  51. V. Myroshnychenko et al., Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 37(9), 1792–1805 (2008)

    Article  Google Scholar 

  52. I. Freestone, The lycurgus cup—a Roman nanotechnology. Gold Bull. 40(4), 270–277 (2007)

    Article  Google Scholar 

  53. M. Faraday, The bakerian lecture: experimental relations of gold (and other metals) to light. Philos. Trans. R. Soc. Lond. 147, 145–181 (1857)

    Article  Google Scholar 

  54. M. Brust et al., Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc., Chem. Commun. 7, 801–802 (1994)

    Article  Google Scholar 

  55. S.J. Tan et al., Building plasmonic nanostructures with DNA. Nat. Nanotechnol. 6(5), 268–276 (2011)

    Article  ADS  Google Scholar 

  56. M. Rycenga et al., Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111(6), 3669–3712 (2011)

    Article  Google Scholar 

  57. L. Jiang et al., Patterning of plasmonic nanoparticles into multiplexed one-dimensional arrays based on spatially modulated electrostatic potential. ACS Nano 5(10), 8288–8294 (2011)

    Article  Google Scholar 

  58. J.K. Gansel et al., Gold helix photonic metamaterial as broadband circular polarizer. Science 325(5947), 1513–1515 (2009)

    Article  ADS  Google Scholar 

  59. C.M. Soukoulis, M. Wegener, Optical metamaterials—more bulky and less lossy. Science 330(6011), 1633–1634 (2010)

    Article  ADS  Google Scholar 

  60. K.L. Kelly et al., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107(3), 668–677 (2002)

    Article  Google Scholar 

  61. J. Schmitt et al., Metal nanoparticle/polymer superlattice films: fabrication and control of layer structure. Adv. Mater. 9(1), 61–65 (1997)

    Article  ADS  Google Scholar 

  62. Z. Feng, F. Yan, Preparation and tribological studies of nanocomposite films fabricated using spin-assisted layer-by-layer assembly. Surf. Coat. Technol. 202(14), 3290–3297 (2008)

    Article  Google Scholar 

  63. B.V. Enustun, J. Turkevich, Coagulation of colloidal gold. J. Am. Chem. Soc. 85(21), 3317–3328 (1963)

    Article  Google Scholar 

  64. J. Kimling et al., Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B 110(32), 15700–15707 (2006)

    Article  Google Scholar 

  65. R.K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and the Biochemistry (Wiley, New York, 1979)

    Google Scholar 

  66. M.D. Abràmoff, P.J. Magalhães, S.J. Ram, Image processing with image. J. Biophotonics Int. 7, 7 (2004)

    Google Scholar 

  67. J. Dintinger et al., A bottom-up approach to fabricate optical metamaterials by self-assembled metallic nanoparticles. Opt. Mater. Express 2(3), 269–278 (2012)

    Article  Google Scholar 

  68. D.J. Shaw, Introduction to Colloid and Surface Chemistry (Elsevier, Amsterdam, 1989)

    Google Scholar 

  69. J.C. Love et al., Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105(4), 1103–1170 (2005)

    Article  Google Scholar 

  70. S.D.T. Brown, B.F.G. Johnson, Nucleation and growth of nano-gold colloidal lattices. Chem. Commun. 11, 1007–1008 (1997)

    Article  Google Scholar 

  71. G. Decher, Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330), 1232–1237 (1997)

    Article  Google Scholar 

  72. P. Lavalle et al., Dynamic aspects of films prepared by a sequential deposition of species: perspectives for smart and responsive materials. Adv. Mater. 23(10), 1191–1221 (2011)

    Article  Google Scholar 

  73. A. Tronin, Ellipsometry and x-ray reflectometry characterization of self-assembly process of polystyrensulfonate and polyallylamine. Colloid Polym. Sci. 272, 1317–1321 (1994)

    Article  Google Scholar 

  74. X. Chen et al., Langmuir–Blodgett patterning: a bottom–up way to build mesostructures over large areas. Acc. Chem. Res. 40(6), 393–401 (2007)

    Article  Google Scholar 

  75. A.M. Funston et al., Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett. 9(4), 1651–1658 (2009)

    Article  ADS  Google Scholar 

  76. G.A. Ozin, A.C. Arsenault, Nanochemistry—A Chemical Approach to Nanomaterials (RSC Publishing, Cambridge, 2005)

    Google Scholar 

  77. A. Christ et al., Symmetry breaking in a plasmonic metamaterial at optical wavelength. Nano Lett. 8(8), 2171–2175 (2008)

    Article  ADS  Google Scholar 

  78. C.R. Simovski, S.A. Tretyakov, Model of isotropic resonant magnetism in the visible range based on core–shell clusters. Phys. Rev. B 79(4), 045111 (2009)

    Article  ADS  Google Scholar 

  79. S. Mühlig et al., Self-assembled plasmonic core–shell clusters with an isotropic magnetic dipole response in the visible range. ACS Nano 5(8), 6586–6592 (2011)

    Article  Google Scholar 

  80. S. Mühlig et al., Cloaking dielectric spherical objects by a shell of metallic nanoparticles. Phys. Rev. B 83(19), 195116 (2011)

    Article  ADS  Google Scholar 

  81. O. Peña-Rodríguez et al., Enhanced Fano resonance in asymmetrical Au: Ag heterodimers. J. Phys. Chem. C (2011)

    Google Scholar 

  82. G. Bachelier et al., Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles. Phys. Rev. Lett. 101(19), 197401 (2008)

    Article  ADS  Google Scholar 

  83. E.R. Encina, E.A. Coronado, On the far field optical properties of Ag-Au nanosphere pairs. J. Phys. Chem. C 114(39), 16278–16284 (2010)

    Article  Google Scholar 

  84. L.V. Brown et al., Heterodimers: plasmonic properties of mismatched nanoparticle pairs. ACS Nano 4(2), 819–832 (2010)

    Article  Google Scholar 

  85. P.C. Lee, D. Meisel, Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 86(17), 3391–3395 (1982)

    Article  Google Scholar 

  86. C. Rockstuhl et al., Scattering properties of meta-atoms. Phys. Rev. B 83(24), 245119 (2011)

    Article  ADS  Google Scholar 

  87. S. Mühlig et al., Multipole analysis of meta-atoms. Metamaterials 5(2–3), 64–73 (2011)

    Article  ADS  Google Scholar 

  88. F. Caruso et al., Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates. Adv. Mater. 13(14), 1090–1094 (2001)

    Article  Google Scholar 

  89. B. Sadtler, A. Wei, Spherical ensembles of gold nanoparticles on silica: electrostatic and size effects. Chem. Commun. 15, 1604–1605 (2002)

    Article  Google Scholar 

  90. I. Pastoriza-Santos et al., Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach. Phys. Chem. Chem. Phys. 6(21), 5056–5060 (2004)

    Article  Google Scholar 

  91. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966–3969 (2000)

    Article  ADS  Google Scholar 

  92. U. Leonhardt, T.G. Philbin, Transformation optics and the geometry of light, in Progress in Optics, ed. by E. Wolf, 1st edn. (Elsevier, Amsterdam, 2009)

    Google Scholar 

  93. C. Enkrich et al., Magnetic metamaterials at telecommunication and visible frequencies. Phys. Rev. Lett. 95(20), 203901 (2005)

    Article  ADS  Google Scholar 

  94. J. Valentine et al., Three-dimensional optical metamaterial with a negative refractive index. Nature 455(7211), 376–379 (2008)

    Article  ADS  Google Scholar 

  95. A.F. Koenderink, Plasmon nanoparticle array waveguides for single photon and single plasmon sources. Nano Lett. 9(12), 4228–4233 (2009)

    Article  ADS  Google Scholar 

  96. A. Manjavacas, F.J. Garcí a de Abajo, Robust plasmon waveguides in strongly interacting nanowire arrays. Nano Lett. 9(4), 1285–1289 (2008)

    Article  ADS  Google Scholar 

  97. N. Engheta, Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317(5845), 1698–1702 (2007)

    Article  ADS  Google Scholar 

  98. K. Li, M.I. Stockman, D.J. Bergman, Self-similar chain of metal nanospheres as an efficient nanolens. Phys. Rev. Lett. 91(22), 227402 (2003)

    Article  ADS  Google Scholar 

  99. M. Karg et al., Nanorod-coated PNIPAM microgels: thermoresponsive optical properties. Small 3(7), 1222–1229 (2007)

    Article  Google Scholar 

Download references

Acknowledgement

Financial support from the University of Geneva and the European Union FP7 (project NANOGOLD) is kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bürgi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cunningham, A., Bürgi, T. (2013). Bottom-up Organisation of Metallic Nanoparticles. In: Rockstuhl, C., Scharf, T. (eds) Amorphous Nanophotonics. Nano-Optics and Nanophotonics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32475-8_1

Download citation

Publish with us

Policies and ethics