Advertisement

Superconducting Gap and Pseudogap in Bi2Sr2CaCu2O8+δ

  • Wentao Zhang
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Because of its anisotropic, complex doping and temperature dependence, energy gap in cuprates is always a focusing point in the study of high temperature superconductivity. There are two scenarios were introduced to understand the relation between pseudogap and superconducting gap. One is “one gap” scenario that pseudogap is the precursor of superconducting gap that electrons pairing happens above T c but these pairs become coherent below T c , the other one is “two gap” that pseudogap is a competitive phase and has nothing to do with superconductivity. This chapter presents the study of the superconducting energy gap and the pseudogap in normal state. The high-precision ARPES measurements on momentum and temperature dependence of energy gap indicates that simple “two gap” or “one gap” scenarios cannot give a good description of the results.

Keywords

Fermi Surface Fermi Momentum Underdoped Region Underdoped Sample ARPES Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Shen, Z.-X., Dessau, D.S., Wells, B.O., King, D.M., Spicer, W.E., Arko, A.J., Marshall, D., Lombardo, L.W., Kapitulnik, A., Dickinson, P., Doniach, S., DiCarlo, J., Loeser, T., Park, C.H.: Anomalously large gap anisotropy in the ab plane of Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 70, 1553–1556 (1993) ADSCrossRefGoogle Scholar
  2. 2.
    Ding, H., Campuzano, J.C., Bellman, A.F., Yokoya, T., Norman, M.R., Randeria, M., Takahashi, T., Katayama-Yoshida, H., Mochiku, T., Kadowaki, K., Jennings, G.: Momentum dependence of the superconducting gap in Bi2Sr2CaCu2O8. Phys. Rev. Lett. 74, 2784–2787 (1995) ADSCrossRefGoogle Scholar
  3. 3.
    Ding, H., Norman, M.R., Campuzano, J.C., Randeria, M., Bellman, A.F., Yokoya, T., Takahashi, T., Mochiku, T., Kadowaki, K.: Angle-resolved photoemission spectroscopy study of the superconducting gap anisotropy in Bi2Sr2CaCu2O8+x. Phys. Rev. B 54, R9678–R9681 (1996) ADSCrossRefGoogle Scholar
  4. 4.
    Ding, H., Yokoya, T., Campuzano, J.C., Takahashi, T., Randeria, M., Norman, M.R., Mochiku, T., Kadowaki, K., Giapintzakis, J.: Spectroscopic evidence for a pseudogap in the normal state of underdoped high-T c superconductors. Nature 382(6586), 51–54 (1996) ADSCrossRefGoogle Scholar
  5. 5.
    Loeser, A.G., Shen, Z.X., Dessau, D.S., Marshall, D.S., Park, C.H., Fournier, P., Kapitulnik, A.: Excitation gap in the normal state of underdoped Bi2Sr2CaCu2O8+δ. Science 273(5273), 325–329 (1996) ADSCrossRefGoogle Scholar
  6. 6.
    Marshall, D.S., Dessau, D.S., Loeser, A.G., Park, C.H., Matsuura, A.Y., Eckstein, J.N., Bozovic, I., Fournier, P., Kapitulnik, A., Spicer, W.E., Shen, Z.X.: Unconventional electronic structure evolution with hole doping in Bi2Sr2CaCu2O8+δ: angle-resolved photoemission results. Phys. Rev. Lett. 76(25), 4841–4844 (1996) ADSCrossRefGoogle Scholar
  7. 7.
    Lee, W.S., Vishik, I.M., Tanaka, K., Lu, D.H., Sasagawa, T., Nagaosa, N., Devereaux, T.P., Hussain, Z., Shen, Z.-X.: Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212. Nature 450(7166), 81–84 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    Tanaka, K., Lee, W.S., Lu, D.H., Fujimori, A., Fujii, T., Risdiana, Terasaki, I., Scalapino, D.J., Devereaux, T.P., Hussain, Z., Shen, Z.-X.: Distinct Fermi-momentum-dependent energy gaps in deeply underdoped Bi2212. Science 314(5807), 1910–1913 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    Gough, C.E., Colclough, M.S., Forgan, E.M., Jordan, R.G., Keene, M., Muirhead, C.M., Rae, A.I.M., Thomas, N., Abell, J.S., Sutton, S.: Flux quantization in a high-T c superconductor. Nature 326(6116), 855 (1987) ADSCrossRefGoogle Scholar
  10. 10.
    Van Harlingen, D.J.: Phase-sensitive tests of the symmetry of the pairing state in the high-temperature superconductors\(\char22\)evidence for \(d_{x^{2}-y^{2}}\) symmetry. Rev. Mod. Phys. 67, 515–535 (1995) ADSCrossRefGoogle Scholar
  11. 11.
    Deutscher, G.: Andreev-Saint-James reflections: a probe of cuprate superconductors. Rev. Mod. Phys. 77, 109–135 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    Emery, V.J., Kivelson, S.A.: Importance of phase fluctuations in superconductors with small superfluid density. Nature 374(6521), 434–437 (1995) ADSCrossRefGoogle Scholar
  13. 13.
    Olson, C.G., Liu, R., Lynch, D.W., List, R.S., Arko, A.J., Veal, B.W., Chang, Y.C., Jiang, P.Z., Paulikas, A.P.: Photoelectron spectroscopic evidence for superconducting gap isotropy in the basal plane of the high-temperature superconductor Bi2Sr2CaCu2O8. Solid State Commun. 76(3), 411–414 (1990) ADSCrossRefGoogle Scholar
  14. 14.
    Wenger, F., Östlund, S.: d-wave pairing in tetragonal superconductors. Phys. Rev. B 47, 5977–5983 (1993) ADSCrossRefGoogle Scholar
  15. 15.
    Giaever, I.: Electron tunneling and superconductivity. Rev. Mod. Phys. 46, 245–250 (1974) ADSCrossRefGoogle Scholar
  16. 16.
    Damascelli, A., Hussain, Z., Shen, Z.-X.: Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003) ADSCrossRefGoogle Scholar
  17. 17.
    Scalapino, D.J.: The case for \(d_{x^{2}-y^{2}}\) pairing in the cuprate superconductors. Phys. Rep. 250(6), 330–365 (1995) ADSCrossRefGoogle Scholar
  18. 18.
    Hardy, W.N., Bonn, D.A., Morgan, D.C., Liang, R., Zhang, K.: Precision measurements of the temperature dependence of λ in YBa2Cu3O6.95: strong evidence for nodes in the gap function. Phys. Rev. Lett. 70, 3999–4002 (1993) ADSCrossRefGoogle Scholar
  19. 19.
    Levi, B.G.: In high-T c superconductors, is d-wave the new wave. Phys. Today 46(5), 17–20 (1993) CrossRefGoogle Scholar
  20. 20.
    Wollman, D.A., Van Harlingen, D.J., Lee, W.C., Ginsberg, D.M., Leggett, A.J.: Experimental determination of the superconducting pairing state in YBCO from the phase coherence of YBCO−Pb dc SQUIDs. Phys. Rev. Lett. 71, 2134–2137 (1993) ADSCrossRefGoogle Scholar
  21. 21.
    Borisenko, S.V., Kordyuk, A.A., Kim, T.K., Legner, S., Nenkov, K.A., Knupfer, M., Golden, M.S., Fink, J., Berger, H., Follath, R.: Superconducting gap in the presence of bilayer splitting in underdoped (Pb, Bi)2Sr2CaCu2O8+δ. Phys. Rev. B 66, 140509 (2002) ADSCrossRefGoogle Scholar
  22. 22.
    Mesot, J., Norman, M.R., Ding, H., Randeria, M., Campuzano, J.C., Paramekanti, A., Fretwell, H.M., Kaminski, A., Takeuchi, T., Yokoya, T., Sato, T., Takahashi, T., Mochiku, T., Kadowaki, K.: Superconducting gap anisotropy and quasiparticle interactions: a doping dependent photoemission study. Phys. Rev. Lett. 83(4), 840–843 (1999) ADSCrossRefGoogle Scholar
  23. 23.
    Norman, M.R., Ding, H., Randeria, M., Campuzano, J.C., Yokoya, T., Takeuchi, T., Takahashi, T., Mochiku, T., Kadowaki, K., Guptasarma, P., Hinks, D.G.: Destruction of the Fermi surface underdoped high-T c superconductors. Nature 392(6672), 157–160 (1998) ADSCrossRefGoogle Scholar
  24. 24.
    Kanigel, A., Norman, M.R., Randeria, M., Chatterjee, U., Souma, S., Kaminski, A., Fretwell, H.M., Rosenkranz, S., Shi, M., Sato, T., Takahashi, T., Li, Z.Z., Raffy, H., Kadowaki, K., Hinks, D., Ozyuzer, L., Campuzano, J.C.: Evolution of the pseudogap from Fermi arcs to the nodal liquid. Nat. Phys. 2(7), 447–451 (2006) CrossRefGoogle Scholar
  25. 25.
    Le Tacon, M., Sacuto, A., Georges, A., Kotliar, G., Gallais, Y., Colson, D., Forget, A.: Two energy scales and two distinct quasiparticle dynamics in the superconducting state of underdoped cuprates. Nat. Phys. 2(8), 537–543 (2006) CrossRefGoogle Scholar
  26. 26.
    Kondo, T., Takeuchi, T., Kaminski, A., Tsuda, S., Shin, S.: Evidence for two energy scales in the superconducting state of optimally doped (Bi, Pb)2(Sr, La)2CuO6+δ. Phys. Rev. Lett. 98, 267004 (2007) ADSCrossRefGoogle Scholar
  27. 27.
    Kanigel, A., Chatterjee, U., Randeria, M., Norman, M.R., Souma, S., Shi, M., Li, Z.Z., Raffy, H., Campuzano, J.C.: Protected nodes and the collapse of Fermi arcs in high-T c cuprate superconductors. Phys. Rev. Lett. 99, 157001 (2007) ADSCrossRefGoogle Scholar
  28. 28.
    Shi, M., Chang, J., Pailhés, S., Norman, M.R., Campuzano, J.C., Månsson, M., Claesson, T., Tjernberg, O., Bendounan, A., Patthey, L., Momono, N., Oda, M., Ido, M., Mudry, C., Mesot, J.: Coherent d-wave superconducting gap in underdoped La2−xSrxCuO4 by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 101, 047002 (2008) ADSCrossRefGoogle Scholar
  29. 29.
    Meng, J., Zhang, W., Liu, G., Zhao, L., Liu, H., Jia, X., Lu, W., Dong, X., Wang, G., Zhang, H., Zhou, Y., Zhu, Y., Wang, X., Zhao, Z., Xu, Z., Chen, C., Zhou, X.J.: Monotonic d-wave superconducting gap of the optimally doped Bi2Sr1.6La0.4CuO6 superconductor by laser-based angle-resolved photoemission spectroscopy. Phys. Rev. B 79, 024514 (2009) ADSCrossRefGoogle Scholar
  30. 30.
    Chatterjee, U., Shi, M., Ai, D., Zhao, J., Kanigel, A., Rosenkranz, S., Raffy, H., Li, Z.Z., Kadowaki, K., Hinks, D.G., Xu, Z.J., Wen, J.S., Gu, G., Lin, C.T., Claus, H., Norman, M.R., Randeria, M., Campuzano, J.C.: Observation of a d-wave nodal liquid in highly underdoped Bi2Sr2CaCu2O8+δ. Nat. Phys. 6(2), 99–103 (2010) CrossRefGoogle Scholar
  31. 31.
    Norman, M.R., Randeria, M., Ding, H., Campuzano, J.C.: Phenomenology of the low-energy spectral function in high-T c superconductors. Phys. Rev. B 57, R11093–R11096 (1998) ADSCrossRefGoogle Scholar
  32. 32.
    Liu, G., Wang, G., Zhu, Y., Zhang, H., Zhang, G., Wang, X., Zhou, Y., Zhang, W., Liu, H., Zhao, L., Meng, J., Dong, X., Chen, C., Xu, Z., Zhou, X.J.: Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV. Rev. Sci. Instrum. 79(2), 023105 (2008) ADSCrossRefGoogle Scholar
  33. 33.
    Chakravarty, S., Laughlin, R.B., Morr, D.K., Nayak, C.: Hidden order in the cuprates. Phys. Rev. B 63, 094503 (2001) ADSCrossRefGoogle Scholar
  34. 34.
    Varma, C.M.: Theory of the pseudogap state of the cuprates. Phys. Rev. B 73, 155113 (2006) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Wentao Zhang
    • 1
  1. 1.Lawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations