Normal Electron Self-energy and Pairing Self-energy in Bi2Sr2CaCu2O8

  • Wentao Zhang
Part of the Springer Theses book series (Springer Theses)


This chapter demonstrates the direct observation of the electron-hole mixing in Bi2212 at low temperature. Normal self-energy and pairing self-energy has provided critical evidence in proving the phonon as the glue of pairing in the BCS theory of superconductivity. The extraction of density of states of pairing glue in conventional superconductors is based on high-precision tunneling experiments which have no momentum resolution. For cuprate superconductors of which the electronic structure is highly anisotropic, it demands techniques with momentum resolution to do the similar extraction. Based on high resolution ARPES and the direct observation of particle-hole mixing in MDC, by fitting the momentum distribution curves (MDCs), the complex electron self-energies and complex gap functions in superconducting state were extracted. The obtained complex gap function could be used to extract the bosonic spectral function associated with high-temperature superconductivity.


Fermi Level Superconducting State Fermi Momentum Cuprate Superconductor Momentum Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957) MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    Gough, C.E., Colclough, M.S., Forgan, E.M., Jordan, R.G., Keene, M., Muirhead, C.M., Rae, A.I.M., Thomas, N., Abell, J.S., Sutton, S.: Flux quantization in a high-T c superconductor. Nature 326(6116), 855 (1987) ADSCrossRefGoogle Scholar
  3. 3.
    Van Harlingen, D.J.: Phase-sensitive tests of the symmetry of the pairing state in the high-temperature superconductors—evidence for \(d_{x^{2}-y^{2}}\) symmetry. Rev. Mod. Phys. 67, 515–535 (1995) ADSCrossRefGoogle Scholar
  4. 4.
    Tsuei, C.C., Kirtley, J.R.: Pairing symmetry in cuprate superconductors. Rev. Mod. Phys. 72, 969–1016 (2000) ADSCrossRefGoogle Scholar
  5. 5.
    Mo Bok, J., Hyun Yun, J., Choi, H.-Y., Zhang, W., Zhou, X.J., Varma, C.M.: Momentum dependence of the single-particle self-energy and fluctuation spectrum of slightly underdoped Bi2Sr2CaCu2O8+δ from high-resolution laser angle-resolved photoemission. Phys. Rev. B 81, 174516 (2010) ADSCrossRefGoogle Scholar
  6. 6.
    Shen, Z.X., Lanzara, A., Ishihara, S., Nagaosa, N.: Role of the electron-phonon interaction in the strongly correlated cuprate superconductors. Philos. Mag., B, Phys. Condens. Matter, Stat. Mech. Electron. Opt. Magn. Prop. 82(13), 1349–1368 (2002) ADSGoogle Scholar
  7. 7.
    Scalapino, D.J.: The case for \(d_{x^{2}-y^{2}}\) pairing in the cuprate superconductors. Phys. Rep. 250(6), 330–365 (1995) ADSCrossRefGoogle Scholar
  8. 8.
    Scalapino, D.J.: Superconductivity, vol. 2. Dekker, New York (1969) Google Scholar
  9. 9.
    Mcmillan, W.L., Rowell, J.M.: Superconductivity, vol. 2. Dekker, New York (1969) Google Scholar
  10. 10.
    Giaever, I., Hart, H.R., Megerle, K.: Tunneling into superconductors at temperatures below 1 k. Phys. Rev. 126, 941–948 (1962) ADSCrossRefGoogle Scholar
  11. 11.
    Rowell, J.M., Anderson, P.W., Thomas, D.E.: Image of the phonon spectrum in the tunneling characteristic between superconductors. Phys. Rev. Lett. 10, 334–336 (1963) ADSCrossRefGoogle Scholar
  12. 12.
    Schrieffer, J.R., Scalapino, D.J., Wilkins, J.W.: Effective tunneling density of states in superconductors. Phys. Rev. Lett. 10, 336–339 (1963) ADSCrossRefGoogle Scholar
  13. 13.
    McMillan, W.L., Rowell, J.M.: Lead phonon spectrum calculated from superconducting density of states. Phys. Rev. Lett. 14, 108–112 (1965) ADSCrossRefGoogle Scholar
  14. 14.
    Lee, J., Fujita, K., McElroy, K., Slezak, J.A., Wang, M., Aiura, Y., Bando, H., Ishikado, M., Masui, T., Zhu, J.-X., Balatsky, A.V., Eisaki, H., Uchida, S., Davis, J.C.: Interplay of electron-lattice interactions and superconductivity in Bi2Sr2CaCu2O8+δ. Nature 442(7102), 546–550 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    Zasadzinski, J.F., Ozyuzer, L., Coffey, L., Gray, K.E., Hinks, D.G., Kendziora, C.: Persistence of strong electron coupling to a narrow boson spectrum in overdoped Bi2Sr2CaCu2O8+δ tunneling data. Phys. Rev. Lett. 96, 017004 (2006) ADSCrossRefGoogle Scholar
  16. 16.
    Carbotte, J.P., Schachinger, E., Basov, D.N.: Coupling strength of charge carriers to spin fluctuations in high-temperature superconductors. Nature 401(6751), 354–356 (1999) ADSCrossRefGoogle Scholar
  17. 17.
    Hwang, J., Timusk, T., Gu, G.D.: High-transition-temperature superconductivity in the absence of the magnetic-resonance mode. Nature 427(6976), 714–717 (2004) ADSCrossRefGoogle Scholar
  18. 18.
    Dordevic, S.V., Homes, C.C., Tu, J.J., Valla, T., Strongin, M., Johnson, P.D., Gu, G.D., Basov, D.N.: Extracting the electron-boson spectral function α 2F(ω) from infrared and photoemission data using inverse theory. Phys. Rev. B 71, 104529 (2005) ADSCrossRefGoogle Scholar
  19. 19.
    van Heumen, E., Muhlethaler, E., Kuzmenko, A.B., Eisaki, H., Meevasana, W., Greven, M., van der Marel, D.: Optical determination of the relation between the electron-boson coupling function and the critical temperature in high-T c cuprates. Phys. Rev. B 79, 184512 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    Damascelli, A., Hussain, Z., Shen, Z.-X.: Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003) ADSCrossRefGoogle Scholar
  21. 21.
    Vekhter, I., Varma, C.M.: Proposal to determine the spectrum of pairing glue in high-temperature superconductors. Phys. Rev. Lett. 90, 237003 (2003) ADSCrossRefGoogle Scholar
  22. 22.
    Abrikosov, A.A., Gorkov, L.P., Dzialoshinskii, I.E.: Methods of Quantum Field Theory in Statistical Physics. Dover Books on Physics. Dover, New York (1975) Google Scholar
  23. 23.
    Matsui, H., Sato, T., Takahashi, T., Wang, S.-C., Yang, H.-B., Ding, H., Fujii, T., Watanabe, T., Matsuda, A.: BCS-like Bogoliubov quasiparticles in high-T c superconductors observed by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 90, 217002 (2003) ADSCrossRefGoogle Scholar
  24. 24.
    Balatsky, A.V., Lee, W.S., Shen, Z.X.: Bogoliubov angle, particle-hole mixture, and angle-resolved photoemission spectroscopy in superconductors. Phys. Rev. B 79, 020505 (2009) ADSCrossRefGoogle Scholar
  25. 25.
    Campuzano, J.C.: The Physics of Superconductors: Superconductivity in Nanostructures, High-T c and Novel Superconductors, Organic Superconductors. The Physics of Superconductors. Springer (2004) Google Scholar
  26. 26.
    Lee, W.S., Vishik, I.M., Tanaka, K., Lu, D.H., Sasagawa, T., Nagaosa, N., Devereaux, T.P., Hussain, Z., Shen, Z.-X.: Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212. Nature 450(7166), 81–84 (2007) ADSCrossRefGoogle Scholar
  27. 27.
    Yang, H.-B., Rameau, J.D., Johnson, P.D., Valla, T., Tsvelik, A., Gu, G.D.: Emergence of preformed cooper pairs from the doped Mott insulating state in Bi2Sr2CaCu2O8+δ. Nature 456(7218), 77–80 (2008) ADSCrossRefGoogle Scholar
  28. 28.
    Liu, G., Wang, G., Zhu, Y., Zhang, H., Zhang, G., Wang, X., Zhou, Y., Zhang, W., Liu, H., Zhao, L., Meng, J., Dong, X., Chen, C., Xu, Z., Zhou, X.J.: Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV. Rev. Sci. Instrum. 79(2), 023105 (2008) ADSCrossRefGoogle Scholar
  29. 29.
    Zhou, X.J., Wannberg, B., Yang, W.L., Brouet, V., Sun, Z., Douglas, J.F., Dessau, D., Hussain, Z., Shen, Z.X.: Space charge effect and mirror charge effect in photoemission spectroscopy. J. Electron Spectrosc. Relat. Phenom. 142(1), 27–38 (2005) CrossRefGoogle Scholar
  30. 30.
    Zhang, W., Mo Bok, J., Hyun Yun, J., He, J., Liu, G., Zhao, L., Liu, H., Meng, J., Jia, X., Peng, Y., Mou, D., Liu Li Yu, S., He, S., Dong, X., Zhang, J., Wen, J.S., Xu, Z.J., Gu, G.D., Wang, G., Zhu, Y., Wang, X., Peng, Q., Wang, Z., Zhang, S., Yang, F., Chen, C., Xu, Z., Choi, H.-Y., Varma, C.M., Zhou, X.J.: Extraction of normal electron self-energy and pairing self-energy in the superconducting state of the Bi2Sr2CaCu2O8 superconductor via laser-based angle-resolved photoemission. Phys. Rev. B 85(6), 064514 (2012) ADSCrossRefGoogle Scholar
  31. 31.
    Zhang, W., Liu, G., Zhao, L., Liu, H., Meng, J., Dong Wei Lu, X., Wen, J.S., Xu, Z.J., Gu, G.D., Sasagawa, T., Wang, G., Zhu, Y., Zhang, H., Zhou, Y., Wang, X., Zhao, Z., Chen, C., Xu, Z., Zhou, X.J.: Identification of a new form of electron coupling in the Bi2Sr2CaCu2O8 superconductor by laser-based angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 100, 107002 (2008) ADSCrossRefGoogle Scholar
  32. 32.
    Markiewicz, R.S., Sahrakorpi, S., Lindroos, M., Lin, H., Bansil, A.: One-band tight-binding model parametrization of the high-T c cuprates including the effect of k z dispersion. Phys. Rev. B 72, 054519 (2005) ADSCrossRefGoogle Scholar
  33. 33.
    Bogdanov, P.V., Lanzara, A., Kellar, S.A., Zhou, X.J., Lu, E.D., Zheng, W.J., Gu, G., Shimoyama, J.-I., Kishio, K., Ikeda, H., Yoshizaki, R., Hussain, Z., Shen, Z.X.: Evidence for an energy scale for quasiparticle dispersion in Bi2Sr2CaCu2O8. Phys. Rev. Lett. 85, 2581–2584 (2000) ADSCrossRefGoogle Scholar
  34. 34.
    Lanzara, A., Bogdanov, P.V., Zhou, X.J., Kellar, S.A., Feng, D.L., Lu, E.D., Yoshida, T., Eisaki, H., Fujimori, A., Kishio, K., Shimoyama, J.-I., Noda, T., Uchida, S., Hussain, Z., Shen, Z.-X.: Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductors. Nature 412(6846), 510–514 (2001) ADSCrossRefGoogle Scholar
  35. 35.
    Kaminski, A., Randeria, M., Campuzano, J.C., Norman, M.R., Fretwell, H., Mesot, J., Sato, T., Takahashi, T., Kadowaki, K.: Renormalization of spectral line shape and dispersion below T c in Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 86, 1070–1073 (2001) ADSCrossRefGoogle Scholar
  36. 36.
    Johnson, P.D., Valla, T., Fedorov, A.V., Yusof, Z., Wells, B.O., Li, Q., Moodenbaugh, A.R., Gu, G.D., Koshizuka, N., Kendziora, C., Jian, S., Hinks, D.G.: Doping and temperature dependence of the mass enhancement observed in the cuprate Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 87, 177007 (2001) ADSCrossRefGoogle Scholar
  37. 37.
    Zhou, X.J., Yoshida, T., Lanzara, A., Bogdanov, P.V., Kellar, S.A., Shen, K.M., Yang, W.L., Ronning, F., Sasagawa, T., Kakeshita, T., Noda, T., Eisaki, H., Uchida, S., Lin, C.T., Zhou, F., Xiong, J.W., Ti, W.X., Zhao, Z.X., Fujimori, A., Hussain, Z., Shen, Z.-X.: High-temperature superconductors: universal nodal Fermi velocity. Nature 423(6938), 398 (2003) ADSCrossRefGoogle Scholar
  38. 38.
    Kordyuk, A.A., Borisenko, S.V., Zabolotnyy, V.B., Geck, J., Knupfer, M., Fink, J., Büchner, B., Lin, C.T., Keimer, B., Berger, H., Pan, A.V., Komiya, S., Ando, Y.: Constituents of the quasiparticle spectrum along the nodal direction of high-T c cuprates. Phys. Rev. Lett. 97, 017002 (2006) ADSCrossRefGoogle Scholar
  39. 39.
    Cuk, T., Baumberger, F., Lu, D.H., Ingle, N., Zhou, X.J., Eisaki, H., Kaneko, N., Hussain, Z., Devereaux, T.P., Nagaosa, N., Shen, Z.-X.: Coupling of the b 1g phonon to the antinodal electronic states of Bi2Sr2Ca0.92Y0.08Cu2O8+δ. Phys. Rev. Lett. 93, 117003 (2004) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Wentao Zhang
    • 1
  1. 1.Lawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations