Advertisement

Angle-Resolved Photoemission Spectroscopy

  • Wentao Zhang
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The ARPES technique has seen continuous development with time. The distinct difference of the ARPES technique in this book is a high resolution spectroscopy system combined with a narrow band vacuum ultra-violet (VUV) laser, giving a total energy resolution better than 1 meV which has been greatly improved from the previous spectroscopy systems equipped with synchrotron light source or gas discharge lamp. In this chapter, a brief introduction to photoemission is given at first. Then based on the VUV laser, development of a new generation ARPES, another spin-resolve ARPES, and ARPES system based on a latest time-of-flight electron energy analyzer are introduced. Moreover, the angular mode test, distribution of Fermi level on detector, space charge effect, test of system resolution and an actual measurement on Bi2Sr2CaCu2O8 on the VUV laser ARPES system is introduced in detail in the main text.

Keywords

Ultra High Vacuum Space Charge Effect Momentum Resolution Nonlinear Optical Crystal Angular Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Chen, C., Lu, J., Togashi, T., Suganuma, T., Sekikawa, T., Watanabe, S., Xu, Z., Wang, J.: Second-harmonic generation from a KBe2BO3F2 crystal in the deep ultraviolet. Opt. Lett. 27(8), 637–639 (2002) ADSCrossRefGoogle Scholar
  2. 2.
    Liu, G., Wang, G., Zhu, Y., Zhang, H., Zhang, G., Wang, X., Zhou, Y., Zhang, W., Liu, H., Zhao, L., Meng, J., Dong, X., Chen, C., Xu, Z., Zhou, X.J.: Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV. Rev. Sci. Instrum. 79(2), 023105 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    Damascelli, A., Hussain, Z., Shen, Z.-X.: Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003) ADSCrossRefGoogle Scholar
  4. 4.
    Hertz, H.: Ann. Phys. (Leipzig) 31, 983 (1887) ADSGoogle Scholar
  5. 5.
    Einstein, A.: Ann. Phys. (Leipzig) 31, 132 (1905) ADSGoogle Scholar
  6. 6.
    Randeria, M., Ding, H., Campuzano, J.-C., Bellman, A., Jennings, G., Yokoya, T., Takahashi, T., Katayama-Yoshida, H., Mochiku, T., Kadowaki, K.: Momentum distribution sum rule for angle-resolved photoemission. Phys. Rev. Lett. 74, 4951–4954 (1995) ADSCrossRefGoogle Scholar
  7. 7.
    Gadzuk, J.W., Šunjić, M.: Excitation energy dependence of core-level x-ray-photoemission-spectra line shapes in metals. Phys. Rev. B 12, 524–530 (1975) ADSCrossRefGoogle Scholar
  8. 8.
    Mahan, G.D.: Theory of photoemission in simple metals. Phys. Rev. B 2, 4334–4350 (1970) ADSCrossRefGoogle Scholar
  9. 9.
    Schaich, W.L., Ashcroft, N.W.: Model calculations in the theory of photoemission. Phys. Rev. B 3, 2452–2465 (1971) ADSCrossRefGoogle Scholar
  10. 10.
    Caroli, C., Lederer-Rozenblatt, D., Roulet, B., Saint-James, D.: Inelastic effects in photoemission: microscopic formulation and qualitative discussion. Phys. Rev. B 8, 4552–4569 (1973) ADSCrossRefGoogle Scholar
  11. 11.
    Feibelman, P.J., Eastman, D.E.: Photoemission spectroscopy—correspondence between quantum theory and experimental phenomenology. Phys. Rev. B 10, 4932–4947 (1974) ADSCrossRefGoogle Scholar
  12. 12.
    Fan, H.Y.: Theory of photoelectric emission from metals. Phys. Rev. 68, 43–52 (1945) ADSCrossRefGoogle Scholar
  13. 13.
    Berglund, C.N., Spicer, W.E.: Photoemission studies of copper and silver: theory. Phys. Rev. 136, A1030–A1044 (1964) ADSCrossRefGoogle Scholar
  14. 14.
    Hüfner, S.: Photoelectron Spectroscopy: Principles and Applications. Springer, Berlin Heidelberg, New York (1996) Google Scholar
  15. 15.
    Abrikosov, A.A., Gorkov, L.P., Dzialoshinskii, I.E.: Quantum Field Theoretical Methods in Statistical Physics. Pergamon, Elmsford (1965) zbMATHGoogle Scholar
  16. 16.
    Hedin, L.: Solid State Physics: Advances in Research and Applications. Academic, New York (1969) Google Scholar
  17. 17.
    Mahan, G.D.: Quantum Theory of Many-Particle Systems. Plenum, New York (1981) Google Scholar
  18. 18.
    Rickayzen, G.: Green’s Functions and Condensed Matter in Techniques of Physics, vol. 7. Academic, London (1991) Google Scholar
  19. 19.
    Seah, M.P., Dench, W.A.: Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1(1), 2–11 (1979) CrossRefGoogle Scholar
  20. 20.
    Sekiyama, A., Iwasaki, T., Matsuda, K., Saitoh, Y., Onuki, Y., Suga, S.: Probing bulk states of correlated electron systems by high-resolution resonance photoemission. Nature 403(6768), 396–398 (2000) ADSCrossRefGoogle Scholar
  21. 21.
    Chen, C., Xu, Z., Deng, D., Zhang, J., Wong, G.K.L., Wu, B., Ye, N., Tang, D.: The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal. Appl. Phys. Lett. 68(21), 2930–2932 (1996) ADSCrossRefGoogle Scholar
  22. 22.
    Kanai, T., Kanda, T., Sekikawa, T., Watanabe, S., Togashi, T., Chen, C., Zhang, C., Xu, Z., Wang, J.: Generation of vacuum-ultraviolet light below 160 nm in a KBBF crystal by the fifth harmonic of a single-mode Ti:sapphire laser. J. Opt. Soc. Am. B 21(2), 370–375 (2004) ADSCrossRefGoogle Scholar
  23. 23.
    Togashi, T., Kanai, T., Sekikawa, T., Watanabe, S., Chen, C., Zhang, C., Xu, Z., Wang, J.: Generation of vacuum-ultraviolet light by an optically contacted, prism-coupled KBe2BO3F2 crystal. Opt. Lett. 28(4), 254–256 (2003) ADSCrossRefGoogle Scholar
  24. 24.
    Kiss, T., Kanetaka, F., Yokoya, T., Shimojima, T., Kanai, K., Shin, S., Onuki, Y., Togashi, T., Zhang, C., Chen, C.T., Watanabe, S.: Photoemission spectroscopic evidence of gap anisotropy in an f-electron superconductor. Phys. Rev. Lett. 94, 057001 (2005) ADSCrossRefGoogle Scholar
  25. 25.
    Kiss, T., Shimojima, T., Kanetaka, F., Kanai, K., Yokoya, T., Shin, S., Onuki, Y., Togashi, T., Zhang, C.Q., Chen, C.T., Watanabe, S.: Ultrahigh-resolution photoemission spectroscopy of superconductors using a VUV laser. J. Electron Spectrosc. Relat. Phenom. 144–147, 953–956 (2005) CrossRefGoogle Scholar
  26. 26.
    Koralek, J.D., Douglas, J.F., Plumb, N.C., Sun, Z., Fedorov, A.V., Murnane, M.M., Kapteyn, H.C., Cundiff, S.T., Aiura, Y., Oka, K., Eisaki, H., Dessau, D.S.: Laser based angle-resolved photoemission, the sudden approximation, and quasiparticle-like spectral peaks in Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 96, 017005 (2006) ADSCrossRefGoogle Scholar
  27. 27.
    Koralek, J.D., Douglas, J.F., Plumb, N.C., Griffith, J.D., Cundiff, S.T., Kapteyn, H.C., Murnane, M.M., Dessau, D.S.: Experimental setup for low-energy laser-based angle resolved photoemission spectroscopy. Rev. Sci. Instrum. 78(5), 053905 (2007) ADSCrossRefGoogle Scholar
  28. 28.
    Yamasaki, T., Yamazaki, K., Ino, A., Arita, M., Namatame, H., Taniguchi, M., Fujimori, A., Shen, Z.-X., Ishikado, M., Uchida, S.: Unmasking the nodal quasiparticle dynamics in cuprate superconductors using low-energy photoemission. Phys. Rev. B 75, 140513 (2007) ADSCrossRefGoogle Scholar
  29. 29.
    Zhou, X.J., Wannberg, B., Yang, W.L., Brouet, V., Sun, Z., Douglas, J.F., Dessau, D., Hussain, Z., Shen, Z.X.: Space charge effect and mirror charge effect in photoemission spectroscopy. J. Electron Spectrosc. Relat. Phenom. 142(1), 27–38 (2005) CrossRefGoogle Scholar
  30. 30.
    Kisker, E., Clauberg, R., Gudat, W.: Electron spectrometer for spin-polarized angle- and energy-resolved photoemission from ferromagnets. Rev. Sci. Instrum. 53(8), 1137–1144 (1982) ADSCrossRefGoogle Scholar
  31. 31.
    Gray, L.G., Hart, M.W., Dunning, F.B., Walters, G.K.: Simple, compact, medium-energy Mott polarization analyzer. Rev. Sci. Instrum. 55(1), 88–91 (1984) ADSCrossRefGoogle Scholar
  32. 32.
    Raue, R., Hopster, H., Kisker, E.: High-resolution spectrometer for spin-polarized electron spectroscopies of ferromagnetic materials. Rev. Sci. Instrum. 55(3), 383–388 (1984) ADSCrossRefGoogle Scholar
  33. 33.
    Tang, F.-C., Zhang, X., Dunning, F.B., Walters, G.K.: Compact low-energy Mott polarimeter for use in energy- and angle-resolved polarization studies. Rev. Sci. Instrum. 59(3), 504–505 (1988) ADSCrossRefGoogle Scholar
  34. 34.
    Gay, T.J., Dunning, F.B.: Mott electron polarimetry. Rev. Sci. Instrum. 63(2), 1635–1651 (1992) ADSCrossRefGoogle Scholar
  35. 35.
    Huang, D.-J., Lee, J.-Y., Suen, J.-S., Mulhollan, G.A., Andrews, A.B., Erskine, J.L.: Adapting a compact Mott spin polarimeter to a large commercial electron energy analyzer for spin-polarized electron spectroscopy. Rev. Sci. Instrum. 64(12), 3474–3479 (1993) ADSCrossRefGoogle Scholar
  36. 36.
    Burnett, G.C., Monroe, T.J., Dunning, F.B.: High-efficiency retarding-potential Mott polarization analyzer. Rev. Sci. Instrum. 65(6), 1893–1896 (1994) ADSCrossRefGoogle Scholar
  37. 37.
    Petrov, V.N., Landolt, M., Galaktionov, M.S., Yushenkov, B.V.: A new compact 60 kV Mott polarimeter for spin polarized electron spectroscopy. Rev. Sci. Instrum. 68(12), 4385–4389 (1997) ADSCrossRefGoogle Scholar
  38. 38.
    Getzlaff, M., Heidemann, B., Bansmann, J., Westphal, C., Schonhense, G.: A variable-angle electron spin polarization detection system. Rev. Sci. Instrum. 69(11), 3913–3923 (1998) ADSCrossRefGoogle Scholar
  39. 39.
    Ghiringhelli, G., Larsson, K., Brookes, N.B.: High-efficiency spin-resolved and spin-integrated electron detection: parallel mounting on a hemispherical analyzer. Rev. Sci. Instrum. 70(11), 4225–4230 (1999) ADSCrossRefGoogle Scholar
  40. 40.
    Huang, D.J., Wu, W.P., Chen, J., Chang, C.F., Chung, S.C., Yuri, M., Lin, H.-J., Johnson, P.D., Chen, C.T.: Performance of a Mott detector for undulator-based spin-resolved spectroscopy. Rev. Sci. Instrum. 73(11), 3778–3783 (2002) ADSCrossRefGoogle Scholar
  41. 41.
    Souma, S., Takayama, A., Sugawara, K., Sato, T., Takahashi, T.: Ultrahigh-resolution spin-resolved photoemission spectrometer with a mini Mott detector. Rev. Sci. Instrum. 81(9), 095101 (2010) ADSCrossRefGoogle Scholar
  42. 42.
    Jozwiak, C., Graf, J., Lebedev, G., Andresen, N., Schmid, A.K., Fedorov, A.V., El Gabaly, F., Wan, W., Lanzara, A., Hussain, Z.: A high-efficiency spin-resolved photoemission spectrometer combining time-of-flight spectroscopy with exchange-scattering polarimetry. Rev. Sci. Instrum. 81(5), 053904 (2010) ADSCrossRefGoogle Scholar
  43. 43.
    Okuda, T., Miyamaoto, K., Miyahara, H., Kuroda, K., Kimura, A., Namatame, H., Taniguchi, M.: Efficient spin resolved spectroscopy observation machine at Hiroshima Synchrotron Radiation Center. Rev. Sci. Instrum. 82(10), 103302 (2011) ADSCrossRefGoogle Scholar
  44. 44.
    Iwasawa, H., Douglas, J.F., Sato, K., Masui, T., Yoshida, Y., Sun, Z., Eisaki, H., Bando, H., Ino, A., Arita, M., Shimada, K., Namatame, H., Taniguchi, M., Tajima, S., Uchida, S., Saitoh, T., Dessau, D.S., Aiura, Y.: Isotopic fingerprint of electron-phonon coupling in high-T c cuprates. Phys. Rev. Lett. 101, 157005 (2008) ADSCrossRefGoogle Scholar
  45. 45.
    Bansil, A., Lindroos, M.: Importance of matrix elements in the ARPES spectra of BISCO. Phys. Rev. Lett. 83, 5154–5157 (1999) ADSCrossRefGoogle Scholar
  46. 46.
    Lindroos, M., Sahrakorpi, S., Bansil, A.: Matrix element effects in angle-resolved photoemission from Bi2Sr2CaCu2O8: energy and polarization dependencies, final state spectrum, spectral signatures of specific transitions, and related issues. Phys. Rev. B 65, 054514 (2002) ADSCrossRefGoogle Scholar
  47. 47.
    Chuang, Y.-D., Gromko, A.D., Fedorov, A.V., Aiura, Y., Oka, K., Ando, Y., Lindroos, M., Markiewicz, R.S., Bansil, A., Dessau, D.S.: Bilayer splitting and coherence effects in optimal and underdoped Bi2Sr2CaCu2O8+δ. Phys. Rev. B 69, 094515 (2004) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Wentao Zhang
    • 1
  1. 1.Lawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations