• Wentao Zhang
Part of the Springer Theses book series (Springer Theses)


The mechanism of high temperature superconductivity in copper-oxide compounds (cuprates) remains unclear after its first discovery in 1986. Many advanced experimental techniques have been applied on these materials, and great progress has been made in understanding related physics and superconductivity. Among these progresses are: the d-wave pairing symmetry identified by phase sensitive technique tunnel junctions, as well as by ARPES and other techniques, the universal electron-boson coupling revealed by ARPES, antiferromagnetic correlations or spin resonance discovered by neutron scattering, the complicated phase diagram studied by various doping dependent experiments, the complex energy gap structure and the pseudogap above transition temperature, the unusual oxygen isotope effect and so on. In these discoveries, many of them were studied by ARPES which is a technique that probes the fundamental single particle spectral function in materials. The current status of the study of cuprate superconductors is introduced in this chapter.


Superconducting Transition Temperature Cuprate Superconductor Fermi Surface Sheet High Superconducting Transition Temperature Copper Oxide Superconductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Onnes, H.K.: Disappearance of the electrical resistance of mercury at helium temperatures. In: Proceedings Koninklijke Akademie van Wetenschappen te Amsterdam, pp. 113–115 (1911) Google Scholar
  2. 2.
    Gavaler, J.R.: Superconductivity in Nb−Ge films above 22 K. Appl. Phys. Lett. 23(8), 480–482 (1973) ADSCrossRefGoogle Scholar
  3. 3.
    Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957) MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    Bednorz, J.G., Muller, K.A.: Possible high-T c superconductivity in the Ba−La−Cu−O system. Z. Phys. B, Condens. Matter 64(2), 189–193 (1986) ADSCrossRefGoogle Scholar
  5. 5.
    Wu, M.K., Ashburn, J.R., Torng, C.J., Hor, P.H., Meng, R.L., Gao, L., Huang, Z.J., Wang, Y.Q., Chu, C.W.: Superconductivity at 93 K in a new mixed-phase Y−Ba−Cu−O compound system at ambient pressure. Phys. Rev. Lett. 58, 908–910 (1987) ADSCrossRefGoogle Scholar
  6. 6.
    Zhao, Z.X.: Superconductivity with critical temperature greater than the boiling point of liquid nitrogen in Ba−Y−Cu. Chin. Sci. Bull. 32, 412 (1987) Google Scholar
  7. 7.
    Schilling, A., Cantoni, M., Guo, J.D., Ott, H.R.: Superconductivity above 130 K in the Hg−Ba−Ca−Cu−O system. Nature 363(6424), 56–58 (1993) ADSCrossRefGoogle Scholar
  8. 8.
    Gao, L., Xue, Y.Y., Chen, F., Xiong, Q., Meng, R.L., Ramirez, D., Chu, C.W., Eggert, J.H., Mao, H.K.: Superconductivity up to 164 K in HgBa2Cam−1CumO2m+2+δ (m=1,2, and 3) under quasihydrostatic pressures. Phys. Rev. B 50, 4260–4263 (1994) ADSCrossRefGoogle Scholar
  9. 9.
    Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: Iron-based layered superconductor La[O1−xFx]FeAs (x=0.05–0.12) with T c=26 K. J. Am. Chem. Soc. 130(11), 3296–3297 (2008) CrossRefGoogle Scholar
  10. 10.
    Chen, X.H., Wu, T., Wu, G., Liu, R.H., Chen, H., Fang, D.F.: Superconductivity at 43 K in SmFeAsO1−xFx. Nature 453(7196), 761–762 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    Chen, G.F., Li, Z., Wu, D., Li, G., Hu, W.Z., Dong, J., Zheng, P., Luo, J.L., Wang, N.L.: Superconductivity at 41 K and its competition with spin-density-wave instability in layered CeO1−xFxFeAs. Phys. Rev. Lett. 100(24), 247002 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    Ren, Z.-A., Yang, J., Lu, W., Yi, W., Shen, X.-L., Li, Z.-C., Che, G.-C., Dong, X.-L., Sun, L.-L., Zhou, F., Zhao, Z.-X.: Superconductivity in the iron-based F-doped layered quaternary compound NdO1−xFxFeAs. EPL (Europhys. Lett.) 82(5), 57002 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    Ren, Z.-A., Lu, W., Yang, J., Yi, W., Shen, X.-L., Li, Z.-C., Che, G.-C., Dong, X.-L., Sun, L.-L., Zhou, F., Zhao, Z.-X.: Superconductivity at 55 K in iron-based f-doped layered quaternary compound SmO1−xFxFeAs. Chin. Phys. Lett. 25(6), 2215 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    Wang, C., Li, L., Chi, S., Zhu, Z., Ren, Z., Li, Y., Wang, Y., Lin, X., Luo, Y., Jiang, S., Xu, X., Cao, G., Xu, Z.: Thorium-doping-induced superconductivity up to 56 K in Gd1−xThxFeAsO. EPL (Europhys. Lett.) 83(6), 67006 (2008) ADSCrossRefGoogle Scholar
  15. 15.
    Tokura, Y., Arima, T.: New classification method for layered copper oxide compounds and its application to design of new high T c superconductors. Jpn. J. Appl. Phys. 29(Part 1, 11), 2388–2402 (1990) ADSCrossRefGoogle Scholar
  16. 16.
    Tarascon, J.M., McKinnon, W.R., Barboux, P., Hwang, D.M., Bagley, B.G., Greene, L.H., Hull, G.W., LePage, Y., Stoffel, N., Giroud, M.: Preparation, structure, and properties of the superconducting compound series Bi2Sr2Can−1CunOy with n=1,2, and 3. Phys. Rev. B 38, 8885–8892 (1988) ADSCrossRefGoogle Scholar
  17. 17.
    Di Stasio, M., Müller, K.A., Pietronero, L.: Nonhomogeneous charge distribution in layered high-T c superconductors. Phys. Rev. Lett. 64, 2827–2830 (1990) ADSCrossRefGoogle Scholar
  18. 18.
    Eisaki, H., Kaneko, N., Feng, D.L., Damascelli, A., Mang, P.K., Shen, K.M., Shen, Z.-X., Greven, M.: Effect of chemical inhomogeneity in bismuth-based copper oxide superconductors. Phys. Rev. B 69, 064512 (2004) ADSCrossRefGoogle Scholar
  19. 19.
    Presland, M.R., Tallon, J.L., Buckley, R.G., Liu, R.S., Flower, N.E.: General trends in oxygen stoichiometry effects on T c in Bi and Tl superconductors. Physica C, Supercond. 176(1–3), 95–105 (1991) ADSCrossRefGoogle Scholar
  20. 20.
    Obertelli, S.D., Cooper, J.R., Tallon, J.L.: Systematics in the thermoelectric power of high-T c oxides. Phys. Rev. B 46(22), 14928–14931 (1992) ADSCrossRefGoogle Scholar
  21. 21.
    Takagi, H., Batlogg, B., Kao, H.L., Kwo, J., Cava, R.J., Krajewski, J.J., Peck, W.F. Jr.: Systematic evolution of temperature-dependent resistivity in La2−xSrxCuO4. Phys. Rev. Lett. 69(20), 2975–2978 (1992) ADSCrossRefGoogle Scholar
  22. 22.
    Marshall, D.S., Dessau, D.S., Loeser, A.G., Park, C.H., Matsuura, A.Y., Eckstein, J.N., Bozovic, I., Fournier, P., Kapitulnik, A., Spicer, W.E., Shen, Z.X.: Unconventional electronic structure evolution with hole doping in Bi2Sr2CaCu2O8+δ: angle-resolved photoemission results. Phys. Rev. Lett. 76(25), 4841–4844 (1996) ADSCrossRefGoogle Scholar
  23. 23.
    Loeser, A.G., Shen, Z.X., Dessau, D.S., Marshall, D.S., Park, C.H., Fournier, P., Kapitulnik, A.: Excitation gap in the normal state of underdoped Bi2Sr2CaCu2O8+δ. Science 273(5273), 325–329 (1996) ADSCrossRefGoogle Scholar
  24. 24.
    Ding, H., Yokoya, T., Campuzano, J.C., Takahashi, T., Randeria, M., Norman, M.R., Mochiku, T., Kadowaki, K., Giapintzakis, J.: Spectroscopic evidence for a pseudogap in the normal state of underdoped high-T c superconductors. Nature 382(6586), 51–54 (1996) ADSCrossRefGoogle Scholar
  25. 25.
    Akimitsu, J., Yamazaki, A., Sawa, H., Fujiki, H.: Superconductivity in the Bi−Sr−Cu−O system. Jpn. J. Appl. Phys. 26(Part 2, 12), L2080–L2081 (1987) ADSCrossRefGoogle Scholar
  26. 26.
    Maeda, H., Tanaka, Y., Fukutomi, M., Asano, T.: A new high-T c oxide superconductor without a rare earth element. Jpn. J. Appl. Phys. 27(Part 2, 2), L209–L210 (1988) ADSCrossRefGoogle Scholar
  27. 27.
    Zhou, X.J., Cuk, T., Devereaux, T., Nagaosa, N., Shen, Z.-X.: Handbook of High-Temperature Superconductivity: Theory and Experiment. Springer, New York (2007) Google Scholar
  28. 28.
    Fink, J., Nucker, N., Romberg, H.A., Fuggle, J.C.: Electronic structure studies of high-T c superconductors by high-energy spectroscopies. IBM J. Res. Dev. 33(3), 372–381 (1989) CrossRefGoogle Scholar
  29. 29.
    Pickett, W.E.: Electronic structure of the high-temperature oxide superconductors. Rev. Mod. Phys. 61(2), 433–512 (1989) ADSCrossRefGoogle Scholar
  30. 30.
    Damascelli, A., Hussain, Z., Shen, Z.-X.: Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003) ADSCrossRefGoogle Scholar
  31. 31.
    Batlogg, B.: High temperature superconductivity. In: Proc. Los Alamos Sym. (1989) Google Scholar
  32. 32.
    Shen, Z.-X., Dessau, D.S., Wells, B.O., King, D.M., Spicer, W.E., Arko, A.J., Marshall, D., Lombardo, L.W., Kapitulnik, A., Dickinson, P., Doniach, S., DiCarlo, J., Loeser, T., Park, C.H.: Anomalously large gap anisotropy in the ab plane of Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 70, 1553–1556 (1993) ADSCrossRefGoogle Scholar
  33. 33.
    Ding, H., Campuzano, J.C., Bellman, A.F., Yokoya, T., Norman, M.R., Randeria, M., Takahashi, T., Katayama-Yoshida, H., Mochiku, T., Kadowaki, K., Jennings, G.: Momentum dependence of the superconducting gap in Bi2Sr2CaCu2O8. Phys. Rev. Lett. 74, 2784–2787 (1995) ADSCrossRefGoogle Scholar
  34. 34.
    Ding, H., Norman, M.R., Campuzano, J.C., Randeria, M., Bellman, A.F., Yokoya, T., Takahashi, T., Mochiku, T., Kadowaki, K.: Angle-resolved photoemission spectroscopy study of the superconducting gap anisotropy in Bi2Sr2CaCu2O8+x. Phys. Rev. B 54, R9678–R9681 (1996) ADSCrossRefGoogle Scholar
  35. 35.
    Shi, M., Chang, J., Pailhés, S., Norman, M.R., Campuzano, J.C., Månsson, M., Claesson, T., Ternberg, O., Bendounan, A., Patthey, L., Momono, N., Oda, M., Ido, M., Mudry, C., Mesot, J.: Coherent d-wave superconducting gap in underdoped La2−xSrxCuO4 by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 101, 047002 (2008) ADSCrossRefGoogle Scholar
  36. 36.
    Meng, J., Zhang, W., Liu, G., Zhao, L., Liu, H., Jia, X., Lu, W., Dong, X., Wang, G., Zhang, H., Zhou, Y., Zhu, Y., Wang, X., Zhao, Z., Xu, Z., Chen, C., Zhou, X.J.: Monotonic d-wave superconducting gap of the optimally doped Bi2Sr1.6La0.4CuO6 superconductor by laser-based angle-resolved photoemission spectroscopy. Phys. Rev. B 79, 024514 (2009) ADSCrossRefGoogle Scholar
  37. 37.
    Kanigel, A., Chatterjee, U., Randeria, M., Norman, M.R., Souma, S., Shi, M., Li, Z.Z., Raffy, H., Campuzano, J.C.: Protected nodes and the collapse of Fermi arcs in high-T c cuprate superconductors. Phys. Rev. Lett. 99, 157001 (2007) ADSCrossRefGoogle Scholar
  38. 38.
    Chatterjee, U., Shi, M., Ai, D., Zhao, J., Kanigel, A., Rosenkranz, S., Raffy, H., Li, Z.Z., Kadowaki, K., Hinks, D.G., Xu, Z.J., Wen, J.S., Gu, G., Lin, C.T., Claus, H., Norman, M.R., Randeria, M., Campuzano, J.C.: Observation of a d-wave nodal liquid in highly underdoped Bi2Sr2CaCu2O8+δ. Nat. Phys. 6(2), 99–103 (2010) CrossRefGoogle Scholar
  39. 39.
    Lee, W.S., Vishik, I.M., Tanaka, K., Lu, D.H., Sasagawa, T., Nagaosa, N., Devereaux, T.P., Hussain, Z., Shen, Z.-X.: Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212. Nature 450(7166), 81–84 (2007) ADSCrossRefGoogle Scholar
  40. 40.
    Tanaka, K., Lee, W.S., Lu, D.H., Fujimori, A., Fujii, T., Risdiana, Terasaki, I., Scalapino, D.J., Devereaux, T.P., Hussain, Z., Shen, Z.-X.: Distinct Fermi-momentum-dependent energy gaps in deeply underdoped Bi2212. Science 314(5807), 1910–1913 (2006) ADSCrossRefGoogle Scholar
  41. 41.
    Kondo, T., Takeuchi, T., Kaminski, A., Tsuda, S., Shin, S.: Evidence for two energy scales in the superconducting state of optimally doped (Bi, Pb)2(Sr, La)2CuO6+δ. Phys. Rev. Lett. 98, 267004 (2007) ADSCrossRefGoogle Scholar
  42. 42.
    Borisenko, S.V., Kordyuk, A.A., Kim, T.K., Legner, S., Nenkov, K.A., Knupfer, M., Golden, M.S., Fink, J., Berger, H., Follath, R.: Superconducting gap in the presence of bilayer splitting in underdoped (Pb, Bi)2Sr2CaCu2O8+δ. Phys. Rev. B 66, 140509 (2002) ADSCrossRefGoogle Scholar
  43. 43.
    Le Tacon, M., Sacuto, A., Georges, A., Kotliar, G., Gallais, Y., Colson, D., Forget, A.: Two energy scales and two distinct quasiparticle dynamics in the superconducting state of underdoped cuprates. Nat. Phys. 2(8), 537–543 (2006) CrossRefGoogle Scholar
  44. 44.
    Bogdanov, P.V., Lanzara, A., Kellar, S.A., Zhou, X.J., Lu, E.D., Zheng, W.J., Gu, G., Shimoyama, J.-I., Kishio, K., Ikeda, H., Yoshizaki, R., Hussain, Z., Shen, Z.X.: Evidence for an energy scale for quasiparticle dispersion in Bi2Sr2CaCu2O8. Phys. Rev. Lett. 85, 2581–2584 (2000) ADSCrossRefGoogle Scholar
  45. 45.
    Lanzara, A., Bogdanov, P.V., Zhou, X.J., Kellar, S.A., Feng, D.L., Lu, E.D., Yoshida, T., Eisaki, H., Fujimori, A., Kishio, K., Shimoyama, J.-I., Noda, T., Uchida, S., Hussain, Z., Shen, Z.-X.: Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductors. Nature 412(6846), 510–514 (2001) ADSCrossRefGoogle Scholar
  46. 46.
    Kaminski, A., Randeria, M., Campuzano, J.C., Norman, M.R., Fretwell, H., Mesot, J., Sato, T., Takahashi, T., Kadowaki, K.: Renormalization of spectral line shape and dispersion below T c in Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 86, 1070–1073 (2001) ADSCrossRefGoogle Scholar
  47. 47.
    Johnson, P.D., Valla, T., Fedorov, A.V., Yusof, Z., Wells, B.O., Li, Q., Moodenbaugh, A.R., Gu, G.D., Koshizuka, N., Kendziora, C., Jian, S., Hinks, D.G.: Doping and temperature dependence of the mass enhancement observed in the cuprate Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 87, 177007 (2001) ADSCrossRefGoogle Scholar
  48. 48.
    Zhou, X.J., Yoshida, T., Lanzara, A., Bogdanov, P.V., Kellar, S.A., Shen, K.M., Yang, W.L., Ronning, F., Sasagawa, T., Kakeshita, T., Noda, T., Eisaki, H., Uchida, S., Lin, C.T., Zhou, F., Xiong, J.W., Ti, W.X., Zhao, Z.X., Fujimori, A., Hussain, Z., Shen, Z.-X.: High-temperature superconductors: universal nodal Fermi velocity. Nature 423(6938), 398 (2003) ADSCrossRefGoogle Scholar
  49. 49.
    Kordyuk, A.A., Borisenko, S.V., Zabolotnyy, V.B., Geck, J., Knupfer, M., Fink, J., Büchner, B., Lin, C.T., Keimer, B., Berger, H., Pan, A.V., Komiya, S., Ando, Y.: Constituents of the quasiparticle spectrum along the nodal direction of high-T c cuprates. Phys. Rev. Lett. 97, 017002 (2006) ADSCrossRefGoogle Scholar
  50. 50.
    Golovashkin, A.I., Ivanenko, O.M., Kudasov, Yu.B., Mitsen, K.V., Pavlovsky, A.I., Platonov, V.V., Tatsenko, O.M.: Low temperature direct measurements of Hc2 in HTSC using megagauss magnetic fields. Physica C, Supercond. 185–189(3), 1859–1860 (1991) CrossRefGoogle Scholar
  51. 51.
    Xu, Z.A., Ong, N.P., Wang, Y., Kakeshita, T., Uchida, S.: Vortex-like excitations and the onset of superconducting phase fluctuation in underdoped La2−xSrxCuO4. Nature 406(6795), 486–488 (2000) ADSCrossRefGoogle Scholar
  52. 52.
    Wang, Y., Xu, Z.A., Kakeshita, T., Uchida, S., Ono, S., Ando, Y., Ong, N.P.: Onset of the vortexlike Nernst signal above T c in La2−xSrxCuO4 and Bi2Sr2−yLayCuO6. Phys. Rev. B 64, 224519 (2001) ADSCrossRefGoogle Scholar
  53. 53.
    Fisher, R.A.: Handbook of High-Temperature Superconductivity: Theory and Experiment. Springer, New York (2007) Google Scholar
  54. 54.
    Olson, C.G., Liu, R., Yang, A.B., Lynch, D.W., Arko, A.J., List, R.S., Veal, B.W., Chang, Y.C., Jiang, P.Z., Paulikas, A.P.: Superconducting gap in Bi−Sr−Ca−Cu−O by high-resolution angle-resolved photoelectron-spectroscopy. Science 245(4919), 731–733 (1989) ADSCrossRefGoogle Scholar
  55. 55.
    Borisenko, S.V., Kordyuk, A.A., Kim, T.K., Koitzsch, A., Knupfer, M., Fink, J., Golden, M.S., Eschrig, M., Berger, H., Follath, R.: Anomalous enhancement of the coupling to the magnetic resonance mode in underdoped Pb−Bi2212. Phys. Rev. Lett. 90, 207001 (2003) ADSCrossRefGoogle Scholar
  56. 56.
    Gweon, G.-H., Sasagawa, T., Zhou, S.Y., Graf, J., Takagi, H., Lee, D.-H., Lanzara, A.: An unusual isotope effect in a high-transition-temperature superconductor. Nature 430(6996), 187–190 (2004) ADSCrossRefGoogle Scholar
  57. 57.
    Ronning, F., Shen, K.M., Armitage, N.P., Damascelli, A., Lu, D.H., Shen, Z.-X., Miller, L.L., Kim, C.: Anomalous high-energy dispersion in angle-resolved photoemission spectra from the insulating cuprate Ca2CuO2Cl2. Phys. Rev. B 71, 094518 (2005) ADSCrossRefGoogle Scholar
  58. 58.
    Graf, J., Gweon, G.-H., McElroy, K., Zhou, S.Y., Jozwiak, C., Rotenberg, E., Bill, A., Sasagawa, T., Eisaki, H., Uchida, S., Takagi, H., Lee, D.-H., Lanzara, A.: Universal high energy anomaly in the angle-resolved photoemission spectra of high temperature superconductors: possible evidence of spinon and holon branches. Phys. Rev. Lett. 98, 067004 (2007) ADSCrossRefGoogle Scholar
  59. 59.
    Xie, B.P., Yang, K., Shen, D.W., Zhao, J.F., Ou, H.W., Wei, J., Gu, S.Y., Arita, M., Qiao, S., Namatame, H., Taniguchi, M., Kaneko, N., Eisaki, H., Tsuei, K.D., Cheng, C.M., Vobornik, I., Fujii, J., Rossi, G., Yang, Z.Q., Feng, D.L.: High-energy scale revival and giant kink in the dispersion of a cuprate superconductor. Phys. Rev. Lett. 98, 147001 (2007) ADSCrossRefGoogle Scholar
  60. 60.
    Valla, T., Kidd, T.E., Yin, W.-G., Gu, G.D., Johnson, P.D., Pan, Z.-H., Fedorov, A.V.: High-energy kink observed in the electron dispersion of high-temperature cuprate superconductors. Phys. Rev. Lett. 98, 167003 (2007) ADSCrossRefGoogle Scholar
  61. 61.
    Meevasana, W., Zhou, X.J., Sahrakorpi, S., Lee, W.S., Yang, W.L., Tanaka, K., Mannella, N., Yoshida, T., Lu, D.H., Chen, Y.L., He, R.H., Lin, H., Komiya, S., Ando, Y., Zhou, F., Ti, W.X., Xiong, J.W., Zhao, Z.X., Sasagawa, T., Kakeshita, T., Fujita, K., Uchida, S., Eisaki, H., Fujimori, A., Hussain, Z., Markiewicz, R.S., Bansil, A., Nagaosa, N., Zaanen, J., Devereaux, T.P., Shen, Z.-X.: Hierarchy of multiple many-body interaction scales in high-temperature superconductors. Phys. Rev. B 75, 174506 (2007) ADSCrossRefGoogle Scholar
  62. 62.
    Pan, Z.-H., Richard, P., Fedorov, A.V., Kondo, T., Takeuchi, T., Li, S.L., Dai, P., Gu, G.D., Ku, W., Wang, Z., Ding, H.: Universal quasiparticle decoherence in hole- and electron-doped high-T c cuprates (2006). arXiv:cond-mat/0610442v2
  63. 63.
    Chang, J., Pailhés, S., Shi, M., Månsson, M., Claesson, T., Tjernberg, O., Voigt, J., Perez, V., Patthey, L., Momono, N., Oda, M., Ido, M., Schnyder, A., Mudry, C., Mesot, J.: When low- and high-energy electronic responses meet in cuprate superconductors. Phys. Rev. B 75, 224508 (2007) ADSCrossRefGoogle Scholar
  64. 64.
    Matsui, H., Sato, T., Takahashi, T., Wang, S.-C., Yang, H.-B., Ding, H., Fujii, T., Watanabe, T., Matsuda, A.: BCS-like Bogoliubov quasiparticles in high-T c superconductors observed by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 90, 217002 (2003) ADSCrossRefGoogle Scholar
  65. 65.
    Balatsky, A.V., Lee, W.S., Shen, Z.X.: Bogoliubov angle, particle-hole mixture, and angle-resolved photoemission spectroscopy in superconductors. Phys. Rev. B 79, 020505 (2009) ADSCrossRefGoogle Scholar
  66. 66.
    Bogdanov, P.V., Lanzara, A., Zhou, X.J., Yang, W.L., Eisaki, H., Hussain, Z., Shen, Z.X.: Anomalous momentum dependence of the quasiparticle scattering rate in overdoped Bi2Sr2CaCu2O8. Phys. Rev. Lett. 89, 167002 (2002) ADSCrossRefGoogle Scholar
  67. 67.
    Bansil, A., Lindroos, M.: Importance of matrix elements in the ARPES spectra of BISCO. Phys. Rev. Lett. 83, 5154–5157 (1999) ADSCrossRefGoogle Scholar
  68. 68.
    Chakravarty, S., Sudbo, A., Anderson, P.W., Strong, S.: Interlayer tunneling and gap anisotropy in high-temperature superconductors. Science 261(5119), 337–340 (1993) ADSCrossRefGoogle Scholar
  69. 69.
    Anderson, P.W.: The Theory of Superconductivity in the High-T c Cuprates. Princeton Series in Physics. Princeton University Press, Princeton (1997) Google Scholar
  70. 70.
    Chuang, Y.-D., Gromko, A.D., Fedorov, A., Aiura, Y., Oka, K., Ando, Y., Eisaki, H., Uchida, S.I., Dessau, D.S.: Doubling of the bands in overdoped Bi2Sr2CaCu2O8+δ: evidence for c-axis bilayer coupling. Phys. Rev. Lett. 87, 117002 (2001) ADSCrossRefGoogle Scholar
  71. 71.
    Feng, D.L., Armitage, N.P., Lu, D.H., Damascelli, A., Hu, J.P., Bogdanov, P., Lanzara, A., Ronning, F., Shen, K.M., Eisaki, H., Kim, C., Shen, Z.-X., Shimoyama, J.-i., Kishio, K.: Bilayer splitting in the electronic structure of heavily overdoped Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 86, 5550–5553 (2001) ADSCrossRefGoogle Scholar
  72. 72.
    Ashcroft, N.W., Mermin, N.D.: Solid State Physics, Holt-Saunders International Editions: Science: Physics. Holt, Rinehart & Winston, New York (1976) Google Scholar
  73. 73.
    Gough, C.E., Colclough, M.S., Forgan, E.M., Jordan, R.G., Keene, M., Muirhead, C.M., Rae, A.I.M., Thomas, N., Abell, J.S., Sutton, S.: Flux quantization in a high-T c superconductor. Nature 326(6116), 855 (1987) ADSCrossRefGoogle Scholar
  74. 74.
    Scalapino, D.J.: Superconductivity, vol. II. Dekker, New York (1969) Google Scholar
  75. 75.
    Mcmillan, W.L., Rowell, J.M.: Superconductivity, vol. II. Dekker, New York (1969) Google Scholar
  76. 76.
    Park, S.R., Song, D.J., Leem, C.S., Kim, C., Kim, C., Kim, B.J., Eisaki, H.: Angle-resolved photoemission spectroscopy of electron-doped cuprate superconductors: isotropic electron-phonon coupling. Phys. Rev. Lett. 101(11), 117006 (2008) ADSCrossRefGoogle Scholar
  77. 77.
    Liu, H., Liu, G., Zhang, W., Zhao, L., Meng, J., Jia, X., Dong, X., Lu, W., Wang, G., Zhou, Y., Zhu, Y., Wang, X., Wu, T., Chen, X., Sasagawa, T., Xu, Z., Chen, C., Zhou, X.J.: Identification of nodal kink in electron-doped (Nd1.85Ce0.15)CuO4 superconductor from laser-based angle-resolved photoemission spectroscopy. EPJ Web of Conferences 23, 00005 (2012) CrossRefGoogle Scholar
  78. 78.
    Cuk, T., Baumberger, F., Lu, D.H., Ingle, N., Zhou, X.J., Eisaki, H., Kaneko, N., Hussain, Z., Devereaux, T.P., Nagaosa, N., Shen, Z.-X.: Coupling of the b 1g phonon to the antinodal electronic states of Bi2Sr2Ca0.92Y0.08Cu2O8+δ. Phys. Rev. Lett. 93, 117003 (2004) ADSCrossRefGoogle Scholar
  79. 79.
    Gromko, A.D., Fedorov, A.V., Chuang, Y.-D., Koralek, J.D., Aiura, Y., Yamaguchi, Y., Oka, K., Ando, Y., Dessau, D.S.: Mass-renormalized electronic excitations at (π,0) in the superconducting state of Bi2Sr2CaCu2O8+δ. Phys. Rev. B 68, 174520 (2003) ADSCrossRefGoogle Scholar
  80. 80.
    Kim, T.K., Kordyuk, A.A., Borisenko, S.V., Koitzsch, A., Knupfer, M., Berger, H., Fink, J.: Doping dependence of the mass enhancement in (Pb,Bi)2Sr2CaCu2O8 at the antinodal point in the superconducting and normal states. Phys. Rev. Lett. 91, 167002 (2003) ADSCrossRefGoogle Scholar
  81. 81.
    Lee, W.S., Meevasana, W., Johnston, S., Lu, D.H., Vishik, I.M., Moore, R.G., Eisaki, H., Kaneko, N., Devereaux, T.P., Shen, Z.X.: Superconductivity-induced self-energy evolution of the nodal electron of optimally doped Bi2Sr2Ca0.92Y0.08Cu2O8+δ. Phys. Rev. B 77, 140504 (2008) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Wentao Zhang
    • 1
  1. 1.Lawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations