Modular Automated Verification of Flexible Manufacturing Systems with Metric Temporal Logic and Non-Standard Analysis

  • Luca Ferrucci
  • Dino Mandrioli
  • Angelo Morzenti
  • Matteo Rossi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7437)


Industrial systems are made of interacting components, which evolve at very different speeds. This is often dealt with in notations used in the industrial practice, such as Stateflow, through the notion of “zero-time transitions”. These have several drawbacks, especially when building complex models from basic components, whose coordination is complicated by the fact that each element is modeled to be in different states at the same time. We exploit a temporal logic formalism based on non-standard analysis to provide a natural formal semantics to the composition of modules described as Stateflow diagrams. The semantics has been implemented in a fully automated formal verification tool, which we apply to the formal verification of an example of robotic cell.


metric temporal logic formal verification flexible manufacturing systems micro- and macro-steps non-standard analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The ℤot bounded model/satisfiability cheker,
  2. 2.
    Alur, R., Henzinger, T.: Reactive modules. Formal Methods in System Design, pp. 15:7–15:48 (1999)Google Scholar
  3. 3.
    Bu, L., Cimatti, A., Li, X., Mover, S., Tonetta, S.: Model Checking of Hybrid Systems Using Shallow Synchronization. In: Hatcliff, J., Zucca, E. (eds.) FMOODS 2010. LNCS, vol. 6117, pp. 155–169. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Ciapessoni, C., Mirandola, P., Coen-Porisini, A., Mandrioli, D., Morzenti, A.: From formal models to formally-based methods: an industrial experience. In: ACM TOSEM, pp. 79–113 (1999)Google Scholar
  5. 5.
    Eshuis, R.: Reconciling statechart semantics. Sci. of Comp. Prog. 74, 65–99 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Ferrucci, L., Mandrioli, D., Morzenti, A., Rossi, M.: Non-null infinitesimal micro-steps: a metric temporal logic approach (2012), extended version,
  7. 7.
    Gargantini, A., Mandrioli, D., Morzenti, A.: Dealing with zero-time transitions in axiom systems. Information and Computation 150(2), 119–131 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Hamon, G., Rushby, J.: An operational semantics for stateflow. Int. J. on Software Tools for Technology Transfer 9(5-6), 447–456 (2007)CrossRefGoogle Scholar
  9. 9.
    Harel, D.: Statecharts: A visual formalism for complex systems. Sci. of Comp. Prog. 8(3), 231–274 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Harel, D., Naamad, A.: The STATEMATE semantics of statecharts. ACM TOSEM 5(4), 293–333 (1996)CrossRefGoogle Scholar
  11. 11.
    Levi, F.: Compositional verification of quantitative properties of statecharts. J. Log. Comp. 11(6), 829–878 (2000)CrossRefGoogle Scholar
  12. 12.
    Object Management Group: OMG Unified Modeling Language (OMG UML), Superstructure. Tech. rep., OMG (2010), formal/2010-05-05Google Scholar
  13. 13.
    Pnueli, A., Shalev, M.: What is in a Step: On the Semantics of Statecharts. In: Ito, T., Meyer, A.R. (eds.) TACS 1991. LNCS, vol. 526, pp. 244–264. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  14. 14.
    Robinson, A.: Non-standard analysis. Princeton University Press (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Luca Ferrucci
    • 1
  • Dino Mandrioli
    • 1
  • Angelo Morzenti
    • 1
  • Matteo Rossi
    • 1
  1. 1.Dipartimento di Elettronica e InformazionePolitecnico di MilanoMilanoItaly

Personalised recommendations