Casimir–Polder Forces on Excited Atoms: Static Theory

Chapter
Part of the Springer Tracts in Modern Physics book series (STMP, volume 248)

Abstract

The Casimir–Polder potential of an excited atom is derived from time-independent perturbation theory. As found within the alternative minimal and multipolar coupling schemes, the excited-atom potential exhibits a resonant component due to real-photon emission. Its significance is illustrated for an atom in front of various plates, including a meta-material superlens.

Keywords

Focal Plane Half Space Evanescent Wave Excited Atom Atomic Transition Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H.B.G. Casimir, D. Polder, Phys. Rev. 73(4), 360 (1948)ADSMATHCrossRefGoogle Scholar
  2. 2.
    S.Y. Buhmann, D.T. Ho, D.G. Welsch, J. Opt. B: Quantum Semiclass. Opt. 6(3), S127 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    S.Y. Buhmann, L. Knöll, D.G. Welsch, D.T. Ho, Phys. Rev. A 70(5), 052117 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    S.Y. Buhmann, D.G. Welsch, Prog. Quantum Electron. 31(2), 51 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    J.M. Wylie, J.E. Sipe, Phys. Rev. A 32(4), 2030 (1985)ADSCrossRefGoogle Scholar
  6. 6.
    D. Meschede, W. Jhe, E.A. Hinds, Phys. Rev. A 41(3), 1587 (1990)ADSCrossRefGoogle Scholar
  7. 7.
    G. Barton, J. Phys. B: At. Mol. Opt. Phys. 7(16), 2134 (1974)ADSCrossRefGoogle Scholar
  8. 8.
    S. Haroche, in Fundamental Systems in Quantum Optics, Les Houches Summer School Session LIII, ed. by J. Dalibard, J.M. Raimond, J. Zinn-Justin (North-Holland, Amsterdam, 1992), p. 767Google Scholar
  9. 9.
    E.A. Hinds, Adv. At. Mol. Opt. Phys. Suppl. 2, 1 (1994)Google Scholar
  10. 10.
    C. Eberlein, R. Zietal, Phys. Rev. A 75(3), 032516 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    M. Babiker, G. Barton, J. Phys. A: Math. Gen. 9(1), 129 (1976)ADSCrossRefGoogle Scholar
  12. 12.
    E.A. Power, T. Thirunamachandran, Phys. Rev. A 25(5), 2473 (1982)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    G.S. Agarwal, Phys. Rev. Lett. 32(13), 703 (1974)ADSCrossRefGoogle Scholar
  14. 14.
    J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1998)Google Scholar
  15. 15.
    J. Schrieffer, Theory of Superconductivity (W.A. Benjamin, New York, 1964)MATHGoogle Scholar
  16. 16.
    H. Haakh, F. Intravaia, C. Henkel, S. Spagnolo, R. Passante, B. Power, F. Sols, Phys. Rev. A 80(6), 062905 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    H.F. Arnoldus, Surf. Sci. 444(1–3), 221 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    C. Eberlein, S.T. Wu, Phys. Rev. A 68(3), 033813 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Sherkunov, Phys. Rev. A 72(5), 052703 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Sherkunov, Phys. Rev. A 75(1), 012705 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    A. Sambale, S.Y. Buhmann, T.D. Ho, D.G. Welsch, Phys. Scr. T 135, 015019 (2009)Google Scholar
  22. 22.
    F. Schuller, Z. Naturforsch, A 49(9), 885 (1994)Google Scholar
  23. 23.
    M. Fichet, F. Schuller, D. Bloch, M. Ducloy, Phys. Rev. A 51(2), 1553 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Microw. Theory Tech. 47(11), 2075 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84(18), 4184 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, C.M. Soukoulis, Science 306(5700), 1351 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J.F. Zhou, T. Koschny, C.M. Soukoulis, Phys. Rev. Lett. 95(20), 203901 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    G. Dolling, C. Enkrich, M. Wegener, J.F. Zhou, C.M. Soukoulis, S. Linden, Opt. Lett. 30(23), 3198 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    A.N. Grigorenko, A.K. Geim, H.F. Gleeson, Y. Zhang, A.A. Firsov, I.Y. Khrushchev, J. Petrovic, Nature 438(7066), 335 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    S. Zhang, W. Fan, N.C. Panoiu, K.J. Malloy, R.M. Osgood, S.R.J. Brueck, Phys. Rev. Lett. 95(13), 137404 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    V.G. Veselago, Sov. Phys. Uspekhi 10(4), 509 (1968)ADSCrossRefGoogle Scholar
  32. 32.
    J.B. Pendry, Phys. Rev. Lett. 85(18), 3966 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    J. Kästel, M. Fleischhauer, Laser Phys. 15(1), 135 (2005)Google Scholar
  34. 34.
    J. Kästel, M. Fleischhauer, Phys. Rev. A 71(1), 011804(R) (2005)Google Scholar
  35. 35.
    A. Sambale, D.G. Welsch, D.T. Ho, S.Y. Buhmann, Phys. Rev. A 78(5), 053828 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Quantum Optics and Laser ScienceImperial College LondonLondonUK

Personalised recommendations