Receptor-Mediated Endocytosis in Plants

  • Simone Di Rubbo
  • Eugenia Russinova


Introducing the concept of receptor-mediated endocytosis (RME) has completely changed the traditional view of endocytosis as a process by which cells simply transport molecules from the plasma membrane (PM) and extracellular space. Internalization of molecules by means of specific cell-surface receptors led to the notion that endocytosis is the master organizer of cellular signalling. RME spatially regulates the signalling outputs of PM receptors by either targeting them for degradation or relocating them to signalling endosomes. Recent studies revealed highly conserved mechanisms behind RME in all eukaryotes, including plants, demonstrating a major role of clathrin as well as post-translational modifications (PTMs) of PM receptors, such as ubiquitination and phosphorylation. In this chapter, we will review the latest data on RME in plants and its function in regulating receptor-mediated signalling. While these recent developments contributed to a better understanding of RME in plants, further work is needed to precisely describe the molecular machinery and to resolve the signalling role of receptor pools localized to different endomembrane compartments.


Epidermal Growth Factor Receptor Auxin Transporter Plant Receptor Clathrin Adaptor Endocytic Machinery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank N.G. Irani for the critical reading of the manuscript and useful suggestions and A. Bleys for helping with manuscript preparation. This work is supported by the BRAVISSIMO Marie-Curie Initial Training Network (PITN-GA-2008-215118).


  1. Albert M, Jehle AK, Mueller K, Eisele C, Lipschis M, Felix G (2010) Arabidopsis thaliana pattern recognition receptors for bacterial elongation factor Tu and flagellin can be combined to form functional chimeric receptors. J Biol Chem 285:19035–19042. doi: 10.1074/jbc.M110.124800 PubMedCrossRefGoogle Scholar
  2. Albrecht C, Russinova E, Hecht V, Baaijens E, De Vries S (2005) The Arabidopsis thaliana somatic embryogenesis receptor-like kinases 1 and 2 control male sporogenesis. Plant Cell 17:3337–3349. doi: 10.1105/tpc.105.036814 PubMedCrossRefGoogle Scholar
  3. Banbury AN, Oakley JD, Sessions RB, Banting G (2003) Tyrphostin A23 inhibits internalization of the transferrin receptor by perturbing the interaction between tyrosine motifs and the medium chain subunit of the AP-2 adaptor complex. J Biol Chem 278:12022–12028. doi: 10.1074/jbc.M211966200 PubMedCrossRefGoogle Scholar
  4. Bandmann V, Homann U (2012) Clathrin-independent endocytosis contributes to uptake of glucose into BY-2 protoplasts. Plant J 70:578–584. doi: 10.1111/j.1365-313X.2011.04892.x PubMedCrossRefGoogle Scholar
  5. Bar M, Avni A (2009) EHD2 inhibits ligand-induced endocytosis and signaling of the leucine-rich repeat receptor-like protein LeEix2. Plant J 59:600–611. doi: 10.1111/j.1365-313X.2009.03897.x PubMedCrossRefGoogle Scholar
  6. Bar M, Sharfman M, Schuster S, Avni A (2009) The coiled-coil domain of EHD2 mediates inhibition of LeEix2 endocytosis and signaling. PLoS One 4:e7973. doi: 10.1371/Journal.Pone.0007973 PubMedCrossRefGoogle Scholar
  7. Bar M, Sharfman M, Ron M, Avni A (2010) BAK1 is required for the attenuation of ethylene-inducing xylanase (Eix)-induced defense responses by the decoy receptor LeEix1. Plant J 63:791–800. doi: 10.1111/j.1365-313X.2010.04282.x PubMedCrossRefGoogle Scholar
  8. Barberon M, Zelazny E, Robert S, Conéjéro G, Curie C, Friml J, Vert G (2011) Monoubiquitin-dependent endocytosis of the iron-regulated transporter 1 (IRT1) transporter controls iron uptake in plants. Proc Natl Acad Sci U.S.A. 108:E450–E458. doi: 10.1073/pnas.1100659108 PubMedCrossRefGoogle Scholar
  9. Bertelsen V, Sak MM, Breen K, Rødland MS, Johannessen LE, Traub LM, Stang E, Madshus IH (2011) A chimeric pre-ubiquitinated EGF receptor is constitutively endocytosed in a clathrin-dependent, but kinase-independent manner. Traffic 12:507–520. doi: 10.1111/j.1600-0854.2011.01162.x PubMedCrossRefGoogle Scholar
  10. Brankatschk B, Wichert SP, Johnson SD, Schaad O, Rossner MJ, Gruenberg J (2012) Regulation of the EGF transcriptional response by endocytic sorting. Sci Signal 5:ra21. doi: 10.1126/scisignal.2002351Google Scholar
  11. Chen X, Irani NG, Friml J (2011) Clathrin-mediated endocytosis: the gateway into plant cells. Curr Opin Plant Biol 14:674–682. doi: 10.1016/j.pbi.2011.08.006 PubMedCrossRefGoogle Scholar
  12. Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nürnberger T, Jones JDG, Felix G, Boller T (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497–500. doi: 10.1038/nature05999 PubMedCrossRefGoogle Scholar
  13. De Smet I, Vassileva V, De Rybel B, Levesque MP, Grunewald W, Van Damme D, Van Noorden G, Naudts M, Van Isterdael G, De Clercq R, Wang JY, Meuli N, Vanneste S, Friml J, Hilson P, Jürgens G, Ingram GC, Inzé D, Benfey PN, Beeckman T (2008) Receptor-like kinase ACR4 restricts formative cell divisions in the Arabidopsis root. Science 322:594–597. doi: 10.1126/science.1160158 PubMedCrossRefGoogle Scholar
  14. Dhonukshe P, Aniento F, Hwang I, Robinson DG, Mravec J, Stierhof YD, Friml J (2007) Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr Biol 17:520–527. doi: 10.1016/j.cub.2007.01.052 PubMedCrossRefGoogle Scholar
  15. Dhonukshe P, Tanaka H, Goh T, Ebine K, Mähönen AP, Prasad K, Blilou I, Geldner N, Xu J, Uemura T, Chory J, Ueda T, Nakano A, Scheres B, Friml J (2008) Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions. Nature 456:962–966. doi: 10.1038/nature07409 PubMedCrossRefGoogle Scholar
  16. Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL (2003) Distinct endocytic pathways regulate TGF-β receptor signaling and turnover. Nat Cell Biol 5:410–421. doi: 10.1038/Ncb975 PubMedCrossRefGoogle Scholar
  17. Di Rubbo S, Irani NG, Russinova E (2011) PP2A phosphatases: the “on-off” regulatory switches of brassinosteroid signaling. Sci Signal 4:25. doi: 10.1126/scisignal.2002046 Google Scholar
  18. Drakakaki G, Robert S, Szatmari AM, Brown MQ, Nagawa S, Van Damme D, Leonard M, Yang Z, Girke T, Schmid SL, Russinova E, Friml J, Raikhel NV, Hicks GR (2011) Clusters of bioactive compounds target dynamic endomembrane networks in vivo. Proc Natl Acad Sci U.S.A. 108:17850–17855. doi: 10.1073/pnas.1108581108 PubMedCrossRefGoogle Scholar
  19. Geldner N, Robatzek S (2008) Plant receptors go endosomal: a moving view on signal transduction. Plant Physiol 147:1565–1574. doi: 10.1104/pp.108.120287 PubMedCrossRefGoogle Scholar
  20. Geldner N, Hyman DL, Wang X, Schumacher K, Chory J (2007) Endosomal signaling of plant steroid receptor kinase BRI1. Genes Dev 21:1598–1602. doi: 10.1101/gad.1561307 PubMedCrossRefGoogle Scholar
  21. Gifford ML, Robertson FC, Soares DC, Ingram GC (2005) ARABIDOPSIS CRINKLY4 function, internalization, and turnover are dependent on the extracellular crinkly repeat domain. Plant Cell 17:1154–1166. doi: 10.1105/tpc.104.029975 PubMedCrossRefGoogle Scholar
  22. Goh LK, Huang F, Kim W, Gygi S, Sorkin A (2010) Multiple mechanisms collectively regulate clathrin-mediated endocytosis of the epidermal growth factor receptor. J Cell Biol 189:871–883. doi: 10.1083/jcb.201001008 PubMedCrossRefGoogle Scholar
  23. Göhre V, Spallek T, Häweker H, Mersmann S, Mentzel T, Boller T, De Torres M, Mansfield JW, Robatzek S (2008) Plant pattern-recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB. Curr Biol 18:1824–1832. doi: 10.1016/j.cub.2008.10.063 PubMedCrossRefGoogle Scholar
  24. Hawryluk MJ, Keyel PA, Mishra SK, Watkins SC, Heuser JE, Traub LM (2006) Epsin 1 is a polyubiquitin-selective clathrin-associated sorting protein. Traffic 7:262–281. doi: 10.1111/j.1600-0854.2006.00383.x PubMedCrossRefGoogle Scholar
  25. Heese A, Hann DR, Gimenez-Ibanez S, Jones AME, He K, Li J, Schroeder JI, Peck SC, Rathjen JP (2007) The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci U.S.A. 104:12217–12222. doi: 10.1073/pnas.0705306104 PubMedCrossRefGoogle Scholar
  26. Henne WM, Boucrot E, Meinecke M, Evergren E, Vallis Y, Mittal R, McMahon HT (2010) FCHo proteins are nucleators of clathrin-mediated endocytosis. Science 328:1281–1284. doi: 10.1126/science.1188462 PubMedCrossRefGoogle Scholar
  27. Horn MA, Heinstein PF, Low PS (1989) Receptor-mediated endocytosis in plant cells. Plant Cell 1:1003–1009. doi: 10.1105/tpc.1.10.1003 PubMedGoogle Scholar
  28. Hothorn M, Belkhadir Y, Dreux M, Dabi T, Noel JP, Wilson IA, Chory J (2011) Structural basis of steroid hormone perception by the receptor kinase BRI1. Nature 474:467–471. doi: 10.1038/Nature10153 PubMedCrossRefGoogle Scholar
  29. Huffaker A, Dafoe NJ, Schmelz EA (2011) ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance. Plant Physiol 155:1325–1338. doi: 10.1104/pp.110.166710 PubMedCrossRefGoogle Scholar
  30. Irani NG, Russinova E (2009) Receptor endocytosis and signaling in plants. Curr Opin Plant Biol 12:653–659. doi: 10.1016/j.pbi.2009.09.011 PubMedCrossRefGoogle Scholar
  31. Irani NG, Di Rubbo S, Mylle E, Van Den Begin J, Schneider-Pizoń J, Hniliková J, Šíša M, Buyst D, Vilarrasa-Blasi J, Szatmári AM, Van Damme D, Mishev K, Codreanu MC, Kohout L, Strnad M, Caño-Delgado AI, Friml J, Madder A, Russinova E (2012) Fluorescent castasterone reveals BRI1 signaling from the plasma membrane. Nat Chem Biol 8:583–589. doi: 10.1038/nchembio.958 PubMedCrossRefGoogle Scholar
  32. Ivanov R, Gaude T (2009) Endocytosis and endosomal regulation of the S-receptor kinase during the self-incompatibility response in Brassica oleracea. Plant Cell 21:2107–2117. doi: 10.1105/tpc.108.063479 PubMedCrossRefGoogle Scholar
  33. Kasai K, Takano J, Miwa K, Toyoda A, Fujiwara T (2011) High boron-induced ubiquitination regulates vacuolar sorting of the BOR1 borate transporter in Arabidopsis thaliana. J Biol Chem 286:6175–6183. doi: 10.1074/jbc.M110.184929 PubMedCrossRefGoogle Scholar
  34. Kawchuk LM, Hachey J, Lynch DR, Kulcsar F, Van Rooijen G, Waterer DR, Robertson A, Kokko E, Byers R, Howard RJ, Fischer R, Prüfer D (2001) Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci U.S.A. 98:6511–6515. doi: 10.1073/pnas.091114198 PubMedCrossRefGoogle Scholar
  35. Kinoshita T, Caño-Delgado A, Seto H, Hiranuma S, Fujioka S, Yoshida S, Chory J (2005) Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433:167–171. doi: 10.1038/Nature.03227 PubMedCrossRefGoogle Scholar
  36. Krol E, Mentzel T, Chinchilla D, Boller T, Felix G, Kemmerling B, Postel S, Arents M, Jeworutzki E, Al-Rasheid KaS, Becker D, Hedrich R (2010) Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2. J Biol Chem 285:13471–13479. doi: 10.1074/jbc.M109.097394 PubMedCrossRefGoogle Scholar
  37. Lease KA, Walker JC (2006) The Arabidopsis unannotated secreted peptide database, a resource for plant peptidomics. Plant Physiol 142:831–838. doi: 10.1104/pp.106.086041 PubMedCrossRefGoogle Scholar
  38. Lee JS, Kuroha T, Hnilova M, Khatayevich D, Kanaoka MM, Mcabee JM, Sarikaya M, Tamerler C, Torii KU (2012) Direct interaction of ligand-receptor pairs specifying stomatal patterning. Genes Dev 26:126–136. doi: 10.1101/gad.179895.111 PubMedCrossRefGoogle Scholar
  39. Leitner J, Petrášek J, Tomanov K, Retzer K, Pařezová M, Korbei B, Bachmair A, Zažímalová E, Luschnig C (2012) Lysine63-linked ubiquitylation of PIN2 auxin carrier protein governs hormonally controlled adaptation of Arabidopsis root growth. Proc Natl Acad Sci U.S.A. 109:8322–8327. doi: 10.1073/pnas.1200824109 PubMedCrossRefGoogle Scholar
  40. Li R, Liu P, Wan Y, Chen T, Wang Q, Mettbach U, Baluška F, Šamaj J, Fang X, Lucas WJ, Lin JA (2012) A membrane microdomain-associated protein, Arabidopsis Flot1, is involved in a clathrin-independent endocytic pathway and is required for seedling development. Plant Cell. 24: 2105–2122. doi: 10.1105/tpc.112.095695 PubMedCrossRefGoogle Scholar
  41. Liu S-H, Marks MS, Brodsky FM (1998) A dominant-negative clathrin mutant differentially affects trafficking of molecules with distinct sorting motifs in the class II major histocompatibility complex (MHC) pathway. J Cell Biol 140:1023–1037. doi: 10.1083/jcb.140.5.1023 PubMedCrossRefGoogle Scholar
  42. Lu D, Lin W, Gao X, Wu S, Cheng C, Avila J, Heese A, Devarenne TP, He P, Shan L (2011) Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity. Science 332:1439–1442. doi: 10.1126/science.1204903 PubMedCrossRefGoogle Scholar
  43. Matsuzaki Y, Ogawa-Ohnishi M, Mori A, Matsubayashi Y (2010) Secreted peptide signals required for maintenance of root stem cell niche in Arabidopsis. Science 329:1065–1067. doi: 10.1126/science.1191132 PubMedCrossRefGoogle Scholar
  44. McMahon HT, Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12:517–533. doi: 10.1038/nrm3151 PubMedCrossRefGoogle Scholar
  45. Motley A, Bright NA, Seaman MNJ, Robinson MS (2003) Clathrin-mediated endocytosis in AP-2-depleted cells. J Cell Biol 162:909–918. doi: 10.1083/jcb.200305145 PubMedCrossRefGoogle Scholar
  46. Mukhopadhyay D, Riezman H (2007) Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315:201–205. doi: 10.1126/science.1127085 PubMedCrossRefGoogle Scholar
  47. Murphy JE, Padilla BE, Hasdemir B, Cottrell GS, Bunnett NW (2009) Endosomes: a legitimate platform for the signaling train. Proc Natl Acad Sci U.S.A. 106:17615–17622. doi: 10.1073/pnas.0906541106 PubMedCrossRefGoogle Scholar
  48. Naramoto S, Kleine-Vehn J, Robert S, Fujimoto M, Dainobu T, Paciorek T, Ueda T, Nakano A, Van Montagu MCE, Fukuda H, Friml J (2010) ADP-ribosylation factor machinery mediates endocytosis in plant cells. Proc Natl Acad Sci U.S.A. 107:21890–21895. doi: 10.1073/pnas.1016260107 PubMedCrossRefGoogle Scholar
  49. Nimchuk ZL, Tarr PT, Ohno C, Qu X, Meyerowitz EM (2011) Plant stem cell signaling involves ligand-dependent trafficking of the CLAVATA1 receptor kinase. Curr Biol 21:345–352. doi: 10.1016/j.cub.2011.01.039 PubMedCrossRefGoogle Scholar
  50. Ogawa M, Shinohara H, Sakagami Y, Matsubayashi Y (2008) Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science 319:294. doi: 10.1126/science.1150083 PubMedCrossRefGoogle Scholar
  51. Ohyama K, Shinohara H, Ogawa-Ohnishi M, Matsubayashi Y (2009) A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nat Chem Biol 5:578–580. doi: 10.1038/nchembio.182 PubMedCrossRefGoogle Scholar
  52. Ortiz-Zapater E, Soriano-Ortega E, Marcote MJ, Ortiz-Masiá D, Aniento F (2006) Trafficking of the human transferrin receptor in plant cells: effects of tyrphostin A23 and brefeldin A. Plant J 48:757–770. doi: 10.1111/j.1365-313X.2006.02909.x PubMedCrossRefGoogle Scholar
  53. Pan JW, Fujioka S, Peng JL, Chen JH, Li GM, Chen RJ (2009) The E3 ubiquitin ligase SCFTIR1/AFB and membrane sterols play key roles in auxin regulation of endocytosis, recycling, and plasma membrane accumulation of the auxin efflux transporter PIN2 in Arabidopsis thaliana. Plant Cell 21:568–580. doi: 10.1105/tpc.108.061465 PubMedCrossRefGoogle Scholar
  54. Rappoport JZ, Simon SM (2009) Endocytic trafficking of activated EGFR is AP-2 dependent and occurs through preformed clathrin spots. J Cell Sci 122:1301–1305. doi: 10.1242/Jcs.040030 PubMedCrossRefGoogle Scholar
  55. Robatzek S, Chinchilla D, Boller T (2006) Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev 20:537–542. doi: 10.1101/Gad.366506 PubMedCrossRefGoogle Scholar
  56. Ron M, Avni A (2004) The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16:1604–1615. doi: 10.1105/Tpc.022475 PubMedCrossRefGoogle Scholar
  57. Roux M, Schwessinger B, Albrecht C, Chinchilla D, Jones A, Holton N, Malinovsky FG, Tör M, De Vries S, Zipfel C (2011) The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell 23:2440–2455. doi: 10.1105/tpc.111.084301 PubMedCrossRefGoogle Scholar
  58. Russinova E, Borst J-W, Kwaaitaal M, Caño-Delgado A, Yin Y, Chory J, De Vries SC (2004) Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and AtSERK3 (BAK1). Plant Cell 16:3216–3229. doi: 10.1105/tpc.104.025387 PubMedCrossRefGoogle Scholar
  59. Salomon S, Robatzek S (2006) Induced endocytosis of the receptor kinase FLS2. Plant Signal Behav 1:293–295. doi: 10.4161/psb.1.6.3594 PubMedCrossRefGoogle Scholar
  60. Schwessinger B, Roux M, Kadota Y, Ntoukakis V, Sklenar J, Jones A, Zipfel C (2011) Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1. PLoS Genet 7:e1002046. doi: 10.1371/journal.pgen.1002046 PubMedCrossRefGoogle Scholar
  61. Scita G, Di Fiore PP (2010) The endocytic matrix. Nature 463:464–473. doi: 10.1038/nature08910 PubMedCrossRefGoogle Scholar
  62. Sharfman M, Bar M, Ehrlich M, Schuster S, Melech-Bonfil S, Ezer R, Sessa G, Avni A (2011) Endosomal signaling of the tomato leucine-rich repeat receptor-like protein LeEix2. Plant J 68:413–423. doi: 10.1111/j.1365-313X.2011.04696.x PubMedCrossRefGoogle Scholar
  63. She J, Han Z, Kim T-W, Wang J, Cheng W, Chang J, Shi S, Wang J, Yang M, Wang Z-Y, Chai J (2011) Structural insight into brassinosteroid perception by BRI1. Nature 474:472–476. doi: 10.1038/Nature10178 PubMedCrossRefGoogle Scholar
  64. Shiu S-H, Bleecker AB (2003) Expansion of the receptor-like kinase/pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132:530–543. doi: 10.1104/pp.103.021964 PubMedCrossRefGoogle Scholar
  65. Shiu S-H, Karlowski WM, Pan R, Tzeng Y-H, Mayer KFX, Li W-H (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16:1220–1234. doi: 10.1105/tpc.020834 PubMedCrossRefGoogle Scholar
  66. Sigismund S, Argenzio E, Tosoni D, Cavallaro E, Polo S, Di Fiore PP (2008) Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev Cell 15:209–219. doi: 10.1016/j.devcel.2008.06.012 PubMedCrossRefGoogle Scholar
  67. Sigismund S, Confalonieri S, Ciliberto A, Polo S, Scita G, Di Fiore PP (2012) Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. Physiol Rev 92:273–366. doi: 10.1152/physrev.00005.2011 PubMedCrossRefGoogle Scholar
  68. Song L, Shi Q-M, Yang X-H, Xu Z-H, Xue H-W (2009) Membrane steroid-binding protein 1 (MSBP1) negatively regulates brassinosteroid signaling by enhancing the endocytosis of BAK1. Cell Res 19:864–876. doi: 10.1038/cr.2009.66 PubMedCrossRefGoogle Scholar
  69. Sorkin A, Von Zastrow M (2009) Endocytosis and signaling: intertwining molecular networks. Nat Rev Mol Cell Biol 10:609–622. doi: 10.1038/Nrm2748 PubMedCrossRefGoogle Scholar
  70. Tang W, Kim T-W, Oses-Prieto JA, Sun Y, Deng Z, Zhu S, Wang R, Burlingame AL, Wang Z-Y (2008) BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321:557–560. doi: 10.1126/science.1156973 PubMedCrossRefGoogle Scholar
  71. Teh O-K, Moore I (2007) An ARF-GEF acting at the golgi and in selective endocytosis in polarized plant cells. Nature 448:493–496. doi: 10.1038/nature06023 PubMedCrossRefGoogle Scholar
  72. Traub LM (2009) Tickets to ride: selecting cargo for clathrin-regulated internalization. Nat Rev Mol Cell Biol 10:583–596. doi: 10.1038/Nrm2751 PubMedCrossRefGoogle Scholar
  73. Umasankar PK, Sanker S, Thieman JR, Chakraborty S, Wendland B, Tsang M, Traub LM (2012) Distinct and separable activities of the endocytic clathrin-coat components Fcho1/2 and AP-2 in developmental patterning. Nat Cell Biol 14:488–501. doi: 10.1038/ncb2473 PubMedCrossRefGoogle Scholar
  74. Umebayashi K, Stenmark H, Yoshimori T (2008) Ubc4/5 and c-Cbl continue to ubiquitinate EGF receptor after internalization to facilitate polyubiquitination and degradation. Mol Biol Cell 19:3454–3462. doi: 10.1091/mbc.E07-10-0988 PubMedCrossRefGoogle Scholar
  75. Vert G, Chory J (2006) Downstream nuclear events in brassinosteroid signaling. Nature 441:96–100. doi: 10.1038/nature04681 PubMedCrossRefGoogle Scholar
  76. Wang G, Ellendorff U, Kemp B, Mansfield JW, Forsyth A, Mitchell K, Bastas K, Liu CM, Woods-Tōr A, Zipfel C, De Wit PJGM, Jones JDG, Tōr M, Thomma BPHJ (2008a) A genome-wide functional investigation into the roles of receptor-like proteins in Arabidopsis. Plant Physiol 147:503–517. doi: 10.1104/pp.108.119487 PubMedCrossRefGoogle Scholar
  77. Wang X, Kota U, He K, Blackburn K, Li J, Goshe MB, Huber SC, Clouse SD (2008b) Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. Dev Cell 15:220–235. doi: 10.1016/j.devcel.2008.06.011 PubMedCrossRefGoogle Scholar
  78. Whitford R, Fernandez A, Tejos R, Cuéllar Pérez A, Kleine-Vehn J, Vanneste S, Drozdzecki A, Leitner J, Abas L, Aerts M, Hoogewijs K, Baster P, De Groodt R, Lin YC, Storme V, Van De Peer Y, Beeckman T, Madder A, Devreese B, Luschnig C, Friml J, Hilson P (2012) GOLVEN secretory peptides regulate auxin carrier turnover during plant gravitropic responses. Dev Cell 22:678–685. doi: 10.1016/j.devcel.2012.02.002 PubMedCrossRefGoogle Scholar
  79. Wu G, Wang X, Li X, Kamiya Y, Otegui MS, Chory J (2011) Methylation of a phosphatase specifies dephosphorylation and degradation of activated brassinosteroid receptors. Sci Signal 4:ra29. doi: 10.1126/scisignal.2001258Google Scholar
  80. Yamaguchi Y, Huffaker A, Bryan AC, Tax FE, Ryan CA (2010) PEPR2 is a second receptor for the pep1 and pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell 22:508–522. doi: 10.1105/tpc.109.068874 PubMedCrossRefGoogle Scholar
  81. Zhang J, Nodzyński T, Pěnčík A, Rolčík J, Friml J (2010) PIN phosphorylation is sufficient to mediate PIN polarity and direct auxin transport. Proc Natl Acad Sci U.S.A. 107:918–922. doi: 10.1073/pnas.0909460107 PubMedCrossRefGoogle Scholar
  82. Zipfel C (2009) Early molecular events in PAMP-triggered immunity. Curr Opin Plant Biol 12:414–420. doi: 10.1016/j.pbi.2009.06.003 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Plant Systems Biology VIBGhent UniversityGhentBelgium
  2. 2.Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium

Personalised recommendations