Endocytosis and Vesicular Recycling in Root Hairs and Pollen Tubes

  • Miroslav Ovečka
  • Peter Illés
  • Irene Lichtscheidl
  • Jan Derksen
  • Jozef Šamaj


Tip growth of root hairs and pollen tubes provides an excellent model for the study of plant cell growth since all the critical molecular players and essential signalling pathways operate simultaneously at the tip of the growing cell. Though not all molecular mechanisms are yet fully understood, many factors have been identified that control and integrate the various structural and physiological networks involved and that thus initiate and maintain polar organization and tip growth. Presently, we will focus on membrane trafficking, in particular on the spatio-temporal regulation of endocytosis and selective recycling by vesicle trafficking and its meaning for the regulation of tip growth. The current state of the art allows to in detail comparing tip growth in root hairs and pollen tubes. Data from both systems may be mutually complementary and used for a better understanding of the complex phenomenon of tip growth.


Root Hair Grow Pollen Tube Secretory Vesicle Fluorescence Recovery After Photobleaching Apical Plasma Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by grant No. ED0007/01/01 to the Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic, by grant no. P501/11/1764 from the Czech Science Foundation (GAČR) and partly supported by grant No. 2/0200/10 from the Grant Agency VEGA.


  1. Backues SK, Korasick DA, Heese A, Bednarek SY (2010) The Arabidopsis dynamin-related Protein2 family is essential for gametophyte development. Plant Cell 22:3218–3231PubMedCrossRefGoogle Scholar
  2. Baluška F, Salaj J, Mathur J, Braun M, Jasper F, Šamaj J, Chua NH, Barlow PW, Volkmann D (2000) Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges. Dev Biol 227:618–632PubMedCrossRefGoogle Scholar
  3. Bednarek SY, Backues SK (2010) Plant dynamin-related protein families DRP1 and DRP2 in plant development. Biochem Soc Trans 38:797–806PubMedCrossRefGoogle Scholar
  4. Bibikova TN, Blancaflor EB, Gilroy S (1999) Microtubules regulate tip growth and orientation in root hairs of Arabidopsis thaliana. Plant J 17:657–665PubMedCrossRefGoogle Scholar
  5. Blackbourn HD, Jackson AP (1996) Plant clathrin heavy chain: sequence analysis and restricted localisation in growing pollen tubes. J Cell Sci 109:777–787PubMedGoogle Scholar
  6. Bloch D, Lavy M, Efrat Y, Efroni I, Bracha-Drori K, Abu-Abied M, Sadot E, Yalovsky S (2005) Ectopic expression of an activated RAC in Arabidopsis disrupts membrane cycling. Mol Biol Cell 16:1913–1927PubMedCrossRefGoogle Scholar
  7. Borner GHH, Sherrier DJ, Weimar T, Michaelson LV, Hawkins ND, MacAskill A, Napier JA, Beale MH, Lilley KS, Dupree P (2005) Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts. Plant Physiol 137:104–116PubMedCrossRefGoogle Scholar
  8. Boutté Y, Frescatada-Rosa M, Men S, Chow C-M, Ebine K, Gustavsson A, Johansson L, Ueda T, Moore I, Jürgens G, Grebe M (2009) Endocytosis restricts Arabidopsis KNOLLE syntaxin to the cell division plane during late cytokinesis. EMBO J 29:546–558PubMedCrossRefGoogle Scholar
  9. Bove J, Vaillancourt B, Kroeger J, Hepler PK, Wiseman PW, Geitmann A (2008) Magnitude and direction of vesicle dynamics in growing pollen tubes using spatiotemporal image correlation spectroscopy and fluorescence recovery after photobleaching. Plant Physiol 147:1646–1658PubMedCrossRefGoogle Scholar
  10. Braun M, Baluška F, von Witsch M, Menzel D (1999) Redistribution of actin, profilin and phosphatidylinositol-4,5-bisphosphate in growing and maturing root hairs. Planta 209:435–443PubMedCrossRefGoogle Scholar
  11. Cai G, Cresti M (2009) Organelle motility in the pollen tube: a tale of 20 years. J Exp Bot 60:495–508PubMedCrossRefGoogle Scholar
  12. Cai G, Faleri C, Del Casino C, Emons AMC, Cresti M (2011) Distribution of callose synthase, cellulose synthase, and sucrose synthase in tobacco pollen tube is controlled in dissimilar ways by actin filaments and microtubules. Plant Physiol 155:1169–1190PubMedCrossRefGoogle Scholar
  13. Camacho L, Malhó R (2003) Endo/exocytosis in pollen tube apex is differentially regulated by Ca2+ and GTPases. J Exp Bot 54:83–92PubMedCrossRefGoogle Scholar
  14. Camacho L, Smertenko AP, Pérez-Gómez J, Hussey PJ, Moore I (2009) Arabidopsis Rab-E GTPases exhibit a novel interaction with a plasma-membrane phosphatidylinositol-4-phosphate 5-kinase. J Cell Sci 122:4383–4392PubMedCrossRefGoogle Scholar
  15. Campanoni P, Blatt MR (2007) Membrane trafficking and polar growth in root hairs and pollen tubes. J Exp Bot 58:65–74PubMedCrossRefGoogle Scholar
  16. Chen Y, Shen S, Guo Y, Lin J, Baluška F, Šamaj J (2006) Differential display proteome analysis of Picea meyeri pollen germination and pollen tube growth after actin-depolymerization by Latrunculin B. Plant J 47:174–195PubMedCrossRefGoogle Scholar
  17. Chen T, Teng N, Wu X, Wang Y, Tang W, Šamaj J, Baluška F, Lin J (2007) Disruption of actin filaments by latrunculin B affects cell wall construction in Picea meyeri pollen tube by disturbing vesicle trafficking. Plant Cell Physiol 48:19–30PubMedCrossRefGoogle Scholar
  18. Cheung AY, Wu HM (2004) Overexpression of an Arabidopsis formin stimulates supernumerary actin cable formation from pollen tube cell membrane. Plant Cell 16:257–269PubMedCrossRefGoogle Scholar
  19. Cheung AY, Wu HM (2008) Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu Rev Plant Biol 59:547–572PubMedCrossRefGoogle Scholar
  20. Cheung AY, Duan Q-H, Costa SS, de Graaf BHJ, Di Stilio VS, Feijo J, Wu H-M (2008) The dynamic pollen tube cytoskeleton: live cell studies using actin-binding and microtubule-binding reporter proteins. Mol Plant 1:686–702PubMedCrossRefGoogle Scholar
  21. Cheung AY, Niroomand S, Zou Y, Wu HM (2010) A transmembrane formin nucleates subapical actin assembly and controls tip-focused growth in pollen tubes. Proc Natl Acad Sci U S A 107:16390–16395PubMedCrossRefGoogle Scholar
  22. Chow CM, Neto H, Foucart C, Moore I (2008) Rab-A2 and Rab-A3 GTPases define a trans-Golgi endosomal membrane domain in Arabidopsis that contributes substantially to the cell plate. Plant Cell 20:101–123PubMedCrossRefGoogle Scholar
  23. de Graaf BH, Cheung AY, Andreyeva T, Levasseur K, Kieliszewski M, Wu HM (2005) Rab11 GTPase-regulated membrane trafficking is crucial for tip-focused pollen tube growth in tobacco. Plant Cell 17:2564–2579PubMedCrossRefGoogle Scholar
  24. Deeks MJ, Cvrčková F, Machesky LM, Mikitova V, Ketelaar T, Žárský V, Davies B, Hussey PJ (2005) Arabidopsis group Ie formins localize to specific cell membrane domains, interact with actin-binding proteins and cause defects in cell expansion upon aberrant expression. New Phytol 168:529–540PubMedCrossRefGoogle Scholar
  25. Derksen J, Rutten T, Lichtscheidl IK, deWin AHN, Pierson ES, Rongen G (1995) Quantitative analysis of the distribution of organelles in tobacco pollen tubes: implications for exocytosis and endocytosis. Protoplasma 188:267–276CrossRefGoogle Scholar
  26. Derksen J, Janssen G-J, Wolters-Arts M, Lichtscheidl I, Adlassnig W, Ovečka M, Doris F, Steer M (2011) Wall architecture with high porosity is established at the tip and maintained in growing pollen tubes of Nicotiana tabacum. Plant J 68:495–506PubMedCrossRefGoogle Scholar
  27. Dettmer J, Hong-Hermesdorf A, Stierhof YD, Schumacher K (2006) Vacuolar H1-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18:715–730PubMedCrossRefGoogle Scholar
  28. Emons AMC (1987) The cytoskeleton and secretory vesicles in root hairs of Equisetum andLimnobium and cytoplasmic streaming in root hairs of Equisetum. Ann Bot 60:625–632Google Scholar
  29. Emons AMC, Ketelaar T (2008) Intracellular organization: a prerequisite for root hair elongation and cell wall deposition. In: Emons AMC, Ketelaar T (eds) Root hairs: excellent tools for the study of plant molecular cell biology. Springer, Berlin, Heidelberg, pp 27–44. doi:  10.1007/7089_2008_4 Google Scholar
  30. Emons AMC, Traas JA (1986) Coated pits and coated vesicles on the plasma membrane of plant cells. Eur J Cell Biol 41:57–64Google Scholar
  31. Fu Y, Wu G, Yang Z (2001) Rop GTPase-dependent dynamics of tip-localized F-actin controls tip growth in pollen tubes. J Cell Biol 152:1019–1032PubMedCrossRefGoogle Scholar
  32. Fujimoto M, Arimura S, Ueda T, Takanashi H, Hayashi Y, Nakano A, Tsutsumi N (2010) Arabidopsis dynamin-related proteins DRP2B and DRP1A participate together in clathrin-coated vesicle formation during endocytosis. Proc Nat Acad Sci U S A 107:6094–6099CrossRefGoogle Scholar
  33. Galway ME, Heckman JW, Schiefelbein JW (1997) Growth and ultrastructure of Arabidopsis root hairs: the rhd3 mutation alters vacuole enlargement and tip growth. Planta 201:209–218PubMedCrossRefGoogle Scholar
  34. Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jürgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230PubMedCrossRefGoogle Scholar
  35. Geldner N, Dénervaud-Tendon V, Hyman DL, Mayer U, Stierhof Y-D, Chory J (2009) Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J 59:169–178PubMedCrossRefGoogle Scholar
  36. Gibbon BC, Kovar DR, Staiger CJ (1999) Latrunculin B has different effects on pollen germination and tube growth. Plant Cell 11:2349–2363PubMedGoogle Scholar
  37. Grebe M, Xu J, Möbius W, Ueda T, Nakano A, Geuze HJ, Rook MB, Scheres B (2003) Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Curr Biol 13:1378–1387PubMedCrossRefGoogle Scholar
  38. Gu Y, Fu Y, Dowd P, Li S, Vernoud V, Gilroy S, Yang Z (2005) A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. J Cell Biol 169:127–138PubMedCrossRefGoogle Scholar
  39. Haney CH, Long SR (2010) Plant flotillins are required for infection by nitrogen-fixing bacteria. Proc Natl Acad Sci U S A 107:478–483PubMedCrossRefGoogle Scholar
  40. Helling D, Possart A, Cottier S, Klahre U, Kost B (2006) Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling. Plant Cell 18:3519–3534PubMedCrossRefGoogle Scholar
  41. Hepler PK, Vidali L, Cheung AY (2001) Polarized cell growth in higher plants. Annu Rev Cell and Dev Biol 17:159–187CrossRefGoogle Scholar
  42. Heslop-Harrison J (1987) Pollen germination and pollen-tube growth. Int Rev Cytol 107:1–78CrossRefGoogle Scholar
  43. Hwang J-U, Wu G, Yan A, Lee Y-J, Grierson CS, Yang Z (2010) Pollen-tube tip growth requires a balance of lateral propagation and global inhibition of Rho-family GTPase activity. J Cell Sci 123:340–350PubMedCrossRefGoogle Scholar
  44. Ischebeck T, Stenzel I, Heilmann I (2008) Type B phosphatidylinositol-4-phosphate 5-kinases mediate Arabidopsis and Nicotiana tabacum pollen tube growth by regulating apical pectin secretion. Plant Cell 20:3312–3330PubMedCrossRefGoogle Scholar
  45. Ischebeck T, Seiler S, Heilmann I (2010) At the poles across kingdoms: phosphoinositides and polar tip growth. Protoplasma 240:13–31PubMedCrossRefGoogle Scholar
  46. Kandasamy MK, McKinney EC, Meagher RB (2009) A single vegetative actin isovariant overexpressed under the control of multiple regulatory sequences is sufficient for normal Arabidopsis development. Plant Cell 21:701–718PubMedCrossRefGoogle Scholar
  47. Kato N, He H, Steger AP (2010) A systems model of vesicle trafficking in Arabidopsis pollen tubes. Plant Physiol 152:590–601PubMedCrossRefGoogle Scholar
  48. Ketelaar T, Faivre-Moskalenko C, Esseling JJ, de Ruijter NC, Grierson CS, Dogterom M, Emons AMC (2002) Positioning of nuclei in Arabidopsis root hairs: an actin-regulated process of tip growth. Plant Cell 14:2941–2955PubMedCrossRefGoogle Scholar
  49. Ketelaar T, de Ruijter NC, Emons AMC (2003) Unstable F-actin specifies the area and microtubule direction of cell expansion in Arabidopsis root hairs. Plant Cell 15:285–292PubMedCrossRefGoogle Scholar
  50. Ketelaar T, Galway ME, Mulder BM, Emons AMC (2008) Rates of exocytosis and endocytosis in Arabidopsis root hairs and pollen tubes. J Microsc 231:265–273PubMedCrossRefGoogle Scholar
  51. Klahre U, Becker C, Schmitt AC, Kost B (2006) Nt-RhoGDI2 regulates Rac/Rop signaling and polar cell growth in tobacco pollen tubes. Plant J 46:1018–1031PubMedCrossRefGoogle Scholar
  52. Konopka CA, Schleede JB, Skop AR, Bednarek SY (2006) Dynamin and cytokinesis. Traffic 7:239–247PubMedCrossRefGoogle Scholar
  53. Konopka CA, Backues SK, Bednarek SY (2008) Dynamics of Arabidopsis dynamin-related protein 1C and a clathrin light chain at the plasma membrane. Plant Cell 20:1363–1380PubMedCrossRefGoogle Scholar
  54. Kost B (2008) Spatial control of Rho (Rac-Rop) signaling in tip-growing plant cells. Trends Cell Biol 18:119–127PubMedCrossRefGoogle Scholar
  55. Kusano H, Testerink C, Vermeer JEM, Tsuge T, Shimada H, Oka A, Munnik T, Aoyama T (2008) The Arabidopsis phosphatidylinositol phosphate 5-kinase PIP5K3 is a key regulator of root hair tip growth. Plant Cell 20:367–380PubMedCrossRefGoogle Scholar
  56. Lam SK, Siu CL, Hillmer S, Jang S, An G, Robinson DG, Jiang L (2007) Rice SCAMP1 defines clathrin-coated, trans-Golgi-located tubularvesicular structures as an early endosome in tobacco BY-2 cells. Plant Cell 19:296–319PubMedCrossRefGoogle Scholar
  57. Lee YJ, Szumlanski A, Nielsen E, Yang Z (2008a) Rho-GTPase-dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis during tip growth. J Cell Biol 181:1155–1168CrossRefGoogle Scholar
  58. Lee Y, Bak G, Choi Y, Chuang W-I, Cho H-T, Lee Y (2008b) Roles of phosphatidylinositol 3-kinase in root hair growth. Plant Physiol 147:624–635CrossRefGoogle Scholar
  59. Lee Y, Kim E-S, Choi Y, Hwang I, Staiger CJ, Chung Y-Y, Lee Y (2008c) The Arabidopsis phosphatidylinositol 3-kinase is important for pollen development. Plant Physiol 147:1886–1897PubMedCrossRefGoogle Scholar
  60. Lennon KA, Lord EM (2000) In vivo pollen tube cell of Arabidopsis thaliana. I. Tube cell cytoplasm and wall. Protoplasma 214:45–56CrossRefGoogle Scholar
  61. Li R, Liu P, Wan Y, Chen T, Wang Q, Mettbach U, Baluška F, Šamaj J, Fang X, Lucas WJ, Lin J (2012) A membrane microdomain-associated protein, Arabidopsis Flot1, is involved in a clathrin-independent endocytic pathway and is required for seedling development. Plant Cell 24:2105–2122Google Scholar
  62. Lin Y, Wang J, Zhu J, Yang Z (1996) Localization of a rho GTPase implies a role in tip growth and movement of the generative cell in pollen tubes. Plant Cell 8:293–303PubMedGoogle Scholar
  63. Lisboa S, Scherer GEF, Quader H (2008) Localized endocytosis in tobacco pollen tubes: visualisation and dynamics of membrane retrieval by a fluorescent phospholipid. Plant Cell Rep 27:21–28PubMedCrossRefGoogle Scholar
  64. Liu P, Li R-L, Zhang L, Wang Q-L, Niehaus K, Baluška F, Šamaj J, Lin J-X (2009) Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in Picea meyeri pollen tube tip growth. Plant J 60:303–313PubMedCrossRefGoogle Scholar
  65. Lovy-Wheeler A, Cárdenas L, Kunkel JG, Hepler PK (2007) Differential organelle movement on the actin cytoskeleton in lily pollen tubes. Cell Motil Cytoskeleton 64:217–232PubMedCrossRefGoogle Scholar
  66. Miedema H, Demidchik V, Véry A-A, Bothwell JHF, Brownlee C, Davies JM (2008) Two voltage-dependent calcium channels co-exist in the apical plasma membrane of Arabidopsis thaliana root hairs. New Phytol 179:378–385PubMedCrossRefGoogle Scholar
  67. Miller DD, de Ruijter NCA, Emons AMC (1997) From signal to form: aspects of the cytoskeleton plasma membrane–cell wall continuum in root hair tips. J Exp Bot 48:1881–1896Google Scholar
  68. Miller DD, De Ruijter NCA, Bisseling T (1999) The role of actin in root hair morphogenesis: studies with lipochito oligosaccharide as a growth stimulator and cytochalasin as an actin perturbing drug. Plant J 17:141–154CrossRefGoogle Scholar
  69. Molendijk AJ, Ruperti B, Palme K (2004) Small GTPases in vesicle trafficking. Curr Opin Plant Biol 7:694–700PubMedCrossRefGoogle Scholar
  70. Moscatelli A, Idilli AI (2009) Pollen tube growth: a delicate equilibrium between secretory and endocytic pathways. J Int Plant Biol 51:727–739CrossRefGoogle Scholar
  71. Moscatelli A, Ciampolini F, Rodighiero S, Onelli E, Cresti M, Santo N, Idilli A (2007) Distinct endocytic pathways identified in tobacco pollen tubes using charged nanogold. J Cell Sci 120:3804–3819PubMedCrossRefGoogle Scholar
  72. Müller J, Mettbach U, Menzel D, Šamaj J (2007) Molecular dissection of endosomal compartments in plants. Plant Physiol 145:293–304PubMedCrossRefGoogle Scholar
  73. Nielsen E, Cheung AY, Ueda T (2008) The regulatory RAB and ARF GTPases for vesicular trafficking. Plant Physiol 147:1516–1526PubMedCrossRefGoogle Scholar
  74. Otto GP, Nichols BJ (2011) The roles of flotillin microdomains—endocytosis and beyond. J Cell Sci 124:3933–3940PubMedCrossRefGoogle Scholar
  75. Ovečka M, Lichtscheidl IK (2006) Sterol endocytosis and trafficking in plant cells. In: Šamaj J, Baluška F, Menzel D (eds) Plant endocytosis. Springer, Berlin, Heidelberg, pp 117–137Google Scholar
  76. Ovečka M, Nadubinská M, Volkmann D, Baluška F (2000) Actomyosin and exocytosis inhibitors alter root hair morphology in Poa annua. Biologia 55:105–114Google Scholar
  77. Ovečka M, Lang I, Baluška F, Ismail A, Illeš P, Lichtscheidl IK (2005) Endocytosis and vesicle trafficking during tip growth of root hairs. Protoplasma 226:39–54PubMedCrossRefGoogle Scholar
  78. Ovečka M, Baluška F, Lichtscheidl IK (2008) Non-invasive microscopy of tip growing root hairs as a tool for study of dynamic, cytoskeleton-based processes. Cell Biol Int 32:549–553PubMedCrossRefGoogle Scholar
  79. Ovečka M, Berson T, Beck M, Derksen J, Šamaj J, Baluška F, Lichtscheidl IK (2010) Structural sterols are involved in both the initiation and tip growth of root hairs in Arabidopsis thaliana. Plant Cell 22:2999–3019PubMedCrossRefGoogle Scholar
  80. Pei W, Du F, Zhang Y, He T, Ren H (2012) Control of the actin cytoskeleton in root hair development. Plant Sci 187:10–18PubMedCrossRefGoogle Scholar
  81. Picton JM, Steer MW (1983) Membrane recycling and the control of secretory activity in pollen tubes. J Cell Sci 63:303–310PubMedGoogle Scholar
  82. Preuss ML, Serna J, Falbel TG, Bednarek SY, Nielsen E (2004) The Arabidopsis Rab GTPase RabA4b localizes to the tips of growing root hair cells. Plant Cell 16:1589–1603PubMedCrossRefGoogle Scholar
  83. Preuss ML, Schmitz AJ, Thole JM, Bonner HK, Otegui MS, Nielsen E (2006) A role for the RabA4b effector protein PI-4 Kβ1 in polarized expansion of root hair cells in Arabidopsis thaliana. J Cell Biol 172:991–998PubMedCrossRefGoogle Scholar
  84. Richter S, Geldner N, Schrader J, Wolters H, Stierhof Y-D, Rios G, Koncz C, Robinson DG, Jürgens G (2007) Functional diversification of closely related ARF-GEFs in protein secretion and recycling. Nature 448:488–492PubMedCrossRefGoogle Scholar
  85. Richter S, Müller LM, Stierhof Y-D, Mayer U, Takada N, Kost B, Vieten A, Geldner N, Koncz C, Jürgens G (2012) Polarized cell growth in Arabidopsis requires endosomal recycling mediated by GBF1-related ARF exchange factors. Nat Cell Biol 14:80–87CrossRefGoogle Scholar
  86. Ridge RW (1995) Micro-vesicles, pyriform vesicles and macrovesicles associated with the plasma membrane in the root hairs of Vicia hirsuta after freeze-substitution. J Plant Res 108:363–368CrossRefGoogle Scholar
  87. Ringli C, Baumberger N, Diet A, Frey B, Keller B (2002) ACTIN2 is essential for bulge site selection and tip growth during root hair development of Arabidopsis. Plant Physiol 129:1464–1472PubMedCrossRefGoogle Scholar
  88. Robertson JG, Lyttleton P (1982) Coated and smooth vesicles in the biogenesis of cell walls, plasma membranes, infection threads and peribacterioid membranes in root hairs and nodules of white clover. J Cell Sci 58:63–78PubMedGoogle Scholar
  89. Šamaj J, Ovečka M, Hlavačka A, Lecourieux F, Meskiene I, Lichtscheidl I, Lenart P, Salaj J, Volkmann D, Bögre L, Baluška F, Hirt H (2002) Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip-growth. EMBO J 21:3296–3306PubMedCrossRefGoogle Scholar
  90. Šamaj J, Baluška F, Voigt B, Schlicht M, Volkmann D, Menzel D (2004) Endocytosis, actin cytoskeleton and signaling. Plant Physiol 135:1150–1161PubMedCrossRefGoogle Scholar
  91. Šamaj J, Müller J, Beck M, Böhm N, Menzel D (2006) Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes. Trends Plant Sci 11:594–600PubMedCrossRefGoogle Scholar
  92. Shaw SL, Dumais J, Long SR (2000) Cell surface expansion in polarly growing root hairs of Medicago truncatula. Plant Physiol 124:959–969PubMedCrossRefGoogle Scholar
  93. Sieberer BJ, Ketelaar T, Esseling JJ, Emons AMC (2005) Microtubules guide root hair tip growth. New Phytol 167:711–719PubMedCrossRefGoogle Scholar
  94. Sousa E, Kost B, Malhó R (2008) Arabidopsis phosphatidylinositol-4-monophosphate 5-kinase 4 regulates pollen tube growth and polarity by modulating membrane recycling. Plant Cell 20:3050–3064PubMedCrossRefGoogle Scholar
  95. Stenmark H (2009) Rab GTPases as co-ordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–525PubMedCrossRefGoogle Scholar
  96. Stenzel I, Ischebeck T, Konig S, Holubowska A, Sporysz M, Hause B, Heilmann I (2008) The type B phosphatidylinositol-4-phosphate 5-kinase 3 is essential for root hair formation in Arabidopsis thaliana. Plant Cell 20:124–141PubMedCrossRefGoogle Scholar
  97. Szumlanski AL, Nielsen E (2009) The Rab GTPase RabA4d regulates pollen tube tip growth in Arabidopsis thaliana. Plant Cell 21:526–544PubMedCrossRefGoogle Scholar
  98. Takáč T, Pechan T, Šamajová O, Ovečka M, Richter H, Eck C, Niehaus K, Šamaj J (2012) Wortmannin treatment induces changes in Arabidopsis root proteome and post-Golgi compartments. J Proteome Res 11:3127–3142CrossRefGoogle Scholar
  99. Taylor NG (2011) A role for Arabidopsis dynamin related proteins DRP2A/B in endocytosis; DRP2 function is essential for plant growth. Plant Mol Biol 76:117–129PubMedCrossRefGoogle Scholar
  100. Thole JM, Nielsen E (2008) Phosphoinositides in plants: novel functions in membrane trafficking. Curr Op Plant Biol 11:620–631CrossRefGoogle Scholar
  101. Traas JA, Braat P, Emons AMC, Meekes H, Derksen J (1985) Microtubules in root hairs. J Cell Sci 76:303–320PubMedGoogle Scholar
  102. Van Bruaene N, Joss G, Van Oostveldt P (2004) Reorganization and in vivo dynamics of microtubules during Arabidopsis root hair development. Plant Physiol 136:3905–3919PubMedCrossRefGoogle Scholar
  103. Vernoud V, Horton AC, Yang Z, Nielsen E (2003) Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol 131:1191–1208PubMedCrossRefGoogle Scholar
  104. Vidali L, McKenna ST, Hepler PK (2001) Actin polymerization is essential for pollen tube growth. Mol Biol Cell 12:2534–2545PubMedGoogle Scholar
  105. Voigt B, Timmers ACJ, Šamaj J, Hlavačka A, Ueda T, Preuss M, Nielsen E, Mathur J, Emans N, Stenmark H, Nakano A, Baluška F, Menzel D (2005) Actin-propelled motility of endosomes is tightly linked to polar tip-growth of root hairs. Eur J Cell Biol 84:609–621PubMedCrossRefGoogle Scholar
  106. Wang X, Teng Y, Wang Q, Li X, Zheng M, Šamaj J, Baluška F, Lin J (2006) Dynamic imaging of vesicles in living pollen tubes of Picea meyeri using evanescent wave microscopy. Plant Physiol 141:1591–1603PubMedCrossRefGoogle Scholar
  107. Wang Y, Chen T, Hao H, Liu P, Zheng M, Baluška F, Šamaj J, Lin J (2009) Nitric oxide is involved in cell wall construction in Pinus bungeana pollen tubes by modulating extracellular Ca2+ influx and actin filaments organization. New Phytol 182:851–862PubMedCrossRefGoogle Scholar
  108. Wang H, Tse YC, Law AHY, Sun SSM, Sun Y-B, Xu Z-F, Hillmer S, Robinson DG, Jiang L (2010a) Vacuolar sorting receptors (VSRs) and secretory carrier membrane proteins (SCAMPs) are essential for pollen tube growth. Plant J 61:826–838CrossRefGoogle Scholar
  109. Wang Y, Zhu Y, Ling Y, Zhang H, Liu P, Baluška F, Šamaj J, Lin J, Wang Q (2010b) Disruption of actin filaments induces mitochondrial Ca2+ release to the cytoplasm and [Ca2+]c changes in Arabidopsis root hairs. BMC Plant Biol 10:53CrossRefGoogle Scholar
  110. Wang H, Zhuang X-H, Hillmer S, Robinson DG, Jiang L-W (2011) Vacuolar sorting receptor (VSR) proteins reach the plasma membrane in germinating pollen tubes. Mol Plant 4:845–853PubMedCrossRefGoogle Scholar
  111. Winship LJ, Obermeyer G, Geitmann A, Hepler PK (2010) Under pressure, cell walls set the pace. Trends Plant Sci 15:363–369PubMedCrossRefGoogle Scholar
  112. Yalovsky S, Bloch D, Sorek N, Kost B (2008) Regulation of membrane trafficking, cytoskeleton dynamics, and cell polarity by ROP/RAC GTPases. Plant Physiol 147:1527–1543PubMedCrossRefGoogle Scholar
  113. Yoo C-M, Wen J, Motes CM, Sparks JA, Blancaflor EB (2008) A class I ADP-ribosylation factor GTPase-activating protein is critical for maintaining directional root hair growth in Arabidopsis. Plant Physiol 147:1659–1674PubMedCrossRefGoogle Scholar
  114. Yoo C-M, Quan L, Cannon AE, Wen J, Blancaflor EB (2012) AGD1, a class 1 ARF-GAP, acts in common signaling pathways with phosphoinositide metabolism and the actin cytoskeleton in controlling Arabidopsis root hair polarity. Plant J 69:1064–1076PubMedCrossRefGoogle Scholar
  115. Žárský V, Cvrčková F, Potocký M, Hála M (2009) Exocytosis and cell polarity in plants-exocyst and recycling domains. New Phytol 183:255–272PubMedCrossRefGoogle Scholar
  116. Zhang Y, McCormick S (2010) The regulation of vesicle trafficking by small GTPases and phospholipids during pollen tube growth. Sex Plant Reprod 23:87–93PubMedCrossRefGoogle Scholar
  117. Zhang Y, He J, Lee D, McCormick S (2010) Interdependence of endomembrane trafficking and actin dynamics during polarized growth of Arabidopsis pollen tubes. Plant Physiol 152:2200–2210PubMedCrossRefGoogle Scholar
  118. Zheng H, Camacho L, Wee E, Batoko H, Legen J, Leaver CJ, Malhó R, Hussey PJ, Moore I (2005) A Rab-E GTPase mutant acts downstream of the Rab-D subclass in biosynthetic membrane traffic to the plasma membrane in tobacco leaf epidermis. Plant Cell 17:2020–2036PubMedCrossRefGoogle Scholar
  119. Zheng M, Beck M, Müller J, Wang X, Wang Q, Baluška F, Logan DC, Šamaj J, Lin J (2009) Cytoskeleton-dependent mitochondrial movements in Arabidopsis root hairs. PLoS One 4:e5961, 1–14Google Scholar
  120. Zheng M, Wang Q, Teng Y, Wang X, Wang F, Chen T, Šamaj J, Lin J, Logan DC (2010) The speed of mitochondrial movement is regulated by the cytoskeleton and myosin in Picea wilsonii pollen tubes. Planta 231:779–791PubMedCrossRefGoogle Scholar
  121. Zonia L (2010) Spatial and temporal integration of signalling networks regulating pollen tube growth. J Exp Bot 61:1939–1957PubMedCrossRefGoogle Scholar
  122. Zonia L, Munnik T (2008) Vesicle trafficking dynamics and visualization of zones of exocytosis and endocytosis in tobacco pollen tubes. J Exp Bot 59:861–873PubMedCrossRefGoogle Scholar
  123. Zou Y, Aggarwal M, Zheng W-G, Wu H-M, Cheung AY (2011) Receptor-like kinases as surface regulators for RAC/ROP-mediated pollen tube growth and interaction with the pistil. AoB Plants: plr017Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Miroslav Ovečka
    • 1
  • Peter Illés
    • 1
  • Irene Lichtscheidl
    • 2
  • Jan Derksen
    • 3
  • Jozef Šamaj
    • 1
  1. 1.Faculty of ScienceCentre of the Region Haná for Biotechnological and Agricultural Research, Palacký UniversityOlomoucCzech Republic
  2. 2.Core Facility of Cell Imaging and Ultrastructure ResearchUniversity of ViennaViennaAustria
  3. 3.Department of Plant Cell BiologyRadboud UniversityNijmegenThe Netherlands

Personalised recommendations