Endocytosis and Cytoskeleton: Dynamic Encounters Shaping the Portals of Cell Entry

Chapter

Abstract

Genetic and pharmacological studies coupled with live imaging have portrayed the crosstalk between cytoskeleton and endocytic pathways of yeast, animals, and plants. Localized actin nucleation at endocytic foci seems to be the driving force for endocytic vesicle formation in yeasts and animals. Actin microfilaments also serve as tracks for intracellular transport of internalized endocytic vesicles. In addition, microtubules serve as the tracks for long range transport of endosomes in mammalian cells. Distinct actin and microtubule associated motor proteins facilitate this transport processes. Depolymerization of cortical actin in plants does not block entry of cargo in cells. However, subsequent trafficking processes are affected indicating a major role of actin in long range transport of endocytic vesicles. In plants involvement of microtubules in endocytic processes specializes both in non-dividing and dividing cells. In interphase cells, cortical microtubules co-align with pinching endocytic vesicles while endoplasmic microtubules direct the trajectories of endocytic materials during mitosis. Microtubules play key roles in delivering secreted and endocytic cargos to the newly assembling cell plate. Thus, with some conserved features of cytoskeletal involvement in endocytosis from yeast and animals, plants shape a unique dialogue between the cytoskeleton and membrane trafficking in order to meet plant-specific needs.

Keywords

Pollen Tube Actin Filament Actin Cytoskeleton Cell Plate Endocytic Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Affentranger S, Martinelli S, Hahn J, Rossy J, Niggli V (2011) Dynamic reorganization of flotillins in chemokine-stimulated human T-lymphocytes. BMC Cell Biol 12:28PubMedCrossRefGoogle Scholar
  2. Aniento F, Emans N, Griffiths G, Gruenberg J (1993) Cytoplasmic dynein-dependent vesicular transport from early to late endosomes. J Cell Biol 123:1373–1387PubMedCrossRefGoogle Scholar
  3. Apodaca G, Katz LA, Mostov KE (1994) Receptor-mediated transcytosis of IgA in MDCK cells is via apical recycling endosomes. J Cell Biol 125:67–86PubMedCrossRefGoogle Scholar
  4. Ayscough KR (2000) Endocytosis and the development of cell polarity in yeast require a dynamic F-actin cytoskeleton. Curr Biol 10:1587–1590PubMedCrossRefGoogle Scholar
  5. Baluška F, Šamaj J, Hlavačka A, Kendrick-Jones J, Volkmann D (2004) Actin-dependent fluid-phase endocytosis in inner cortex cells of maize root apices. J Exp Bot 55:463–473PubMedCrossRefGoogle Scholar
  6. Baluška F, Šamaj J, Wojtaszek P, Volkmann D, Menzel D (2003) Cytoskeleton-plasma membrane-cell wall continuum in plants. Emerging links revisited. Plant Physiol 133:482–491PubMedCrossRefGoogle Scholar
  7. Banno H, Chua NH (2000) Characterization of the arabidopsis formin-like protein AFH1 and its interacting protein. Plant Cell Physiol 41:617–626PubMedCrossRefGoogle Scholar
  8. Bar M, Aharon M, Benjamin S, Rotblat B, Horowitz M, Avni A (2008) AtEHDs, novel Arabidopsis EH-domain-containing proteins involved in endocytosis. Plant J 55:1025–1038PubMedCrossRefGoogle Scholar
  9. Bar M, Avni A (2009) EHD2 inhibits ligand-induced endocytosis and signaling of the leucine-rich repeat receptor-like protein LeEix2. Plant J 59:600–611PubMedCrossRefGoogle Scholar
  10. Berg JS, Powell BC, Cheney RE (2001) A millennial myosin census. Mol Biol Cell 12:780–794PubMedGoogle Scholar
  11. Bloch D, Lavy M, Efrat Y, Efroni I, Bracha-Drori K, Abu-Abied M, Sadot E, Yalovsky S (2005) Ectopic expression of an activated RAC in Arabidopsis disrupts membrane cycling. Mol Biol Cell 16:1913–1927PubMedCrossRefGoogle Scholar
  12. Boutte Y, Crosnier MT, Carraro N, Traas J, Satiat-Jeunemaitre B (2006) The plasma membrane recycling pathway and cell polarity in plants: studies on PIN proteins. J Cell Sci 119:1255–1265PubMedCrossRefGoogle Scholar
  13. Caviston JP, Holzbaur EL (2006) Microtubule motors at the intersection of trafficking and transport. Trends Cell Biol 16:530–537PubMedCrossRefGoogle Scholar
  14. Chadda R, Howes MT, Plowman SJ, Hancock JF, Parton RG, Mayor S (2007) Cholesterol-sensitive Cdc42 activation regulates actin polymerization for endocytosis via the GEEC pathway. Traffic 8:702–717PubMedCrossRefGoogle Scholar
  15. Cheung AY, Wu HM (2004) Overexpression of an Arabidopsis formin stimulates supernumerary actin cable formation from pollen tube cell membrane. Plant Cell 16:257–269PubMedCrossRefGoogle Scholar
  16. de Forges H, Bouissou A, Perez F (2012) Interplay between microtubule dynamics and intracellular organization. Int J Biochem Cell Biol 44:266–274PubMedCrossRefGoogle Scholar
  17. Dhonukshe P, Baluška F, Schlicht M, Hlavačka A, Šamaj J, Friml J, Gadella TW Jr (2006) Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis. Dev Cell 10:137–150PubMedCrossRefGoogle Scholar
  18. Dhonukshe P, Grigoriev I, Fischer R, Tominaga M, Robinson DG, Hasek J, Paciorek T, Petrášek J, Seifertová D, Tejos R, Meisel LA, Zažímalová E, Gadella TW Jr, Stierhof YD, Ueda T, Oiwa K, Akhmanova A, Brock R, Spang A, Friml J (2008) Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. Proc Natl Acad Sci U S A 105:4489–4494PubMedCrossRefGoogle Scholar
  19. Dhonukshe P, Mathur J, Hulskamp M, Gadella TW Jr (2005) Microtubule plus-ends reveal essential links between intracellular polarization and localized modulation of endocytosis during division-plane establishment in plant cells. BMC Biol 3:11PubMedCrossRefGoogle Scholar
  20. Dong CH, Xia GX, Hong Y, Ramachandran S, Kost B, Chua NH (2001) ADF proteins are involved in the control of flowering and regulate F-actin organization, cell expansion, and organ growth in Arabidopsis. Plant Cell 13:1333–1346PubMedGoogle Scholar
  21. Duncan MC, Cope MJ, Goode BL, Wendland B, Drubin DG (2001) Yeast Eps15-like endocytic protein, Pan1p, activates the Arp2/3 complex. Nat Cell Biol 3:687–690PubMedCrossRefGoogle Scholar
  22. Echarri A, Muriel O, Pavon DM, Azegrouz H, Escolar F, Sanchez-Cabo F, Martinez F, Montoya MC, Llorca O, Del Pozo MA (2012) Caveolar domain organization and trafficking is regulated by Abl kinases and mDia1. J Cell Sci. doi: 10.1242/jcs.090134 PubMedGoogle Scholar
  23. Favery B, Chelysheva LA, Lebris M, Jammes F, Marmagne A, De Almeida-Engler J, Lecomte P, Vaury C, Arkowitz RA, Abad P (2004) Arabidopsis formin AtFH6 is a plasma membrane-associated protein upregulated in giant cells induced by parasitic nematodes. Plant Cell 16:2529–2540PubMedCrossRefGoogle Scholar
  24. Frank M, Egile C, Dyachok J, Djakovic S, Nolasco M, Li R, Smith LG (2004) Activation of Arp2/3 complex-dependent actin polymerization by plant proteins distantly related to Scar/WAVE. Proc Natl Acad Sci U S A 101:16379–16384PubMedCrossRefGoogle Scholar
  25. Gekle M, Mildenberger S, Freudinger R, Schwerdt G, Silbernagl S (1997) Albumin endocytosis in OK cells: dependence on actin and microtubules and regulation by protein kinases. Am J Physiol 272:668–677Google Scholar
  26. Geldner N, Friml J, Stierhof YD, Jurgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428PubMedCrossRefGoogle Scholar
  27. Geli MI, Riezman H (1996) Role of type I myosins in receptor-mediated endocytosis in yeast. Science 272:533–535PubMedCrossRefGoogle Scholar
  28. Girao H, Geli MI, Idrissi FZ (2008) Actin in the endocytic pathway: from yeast to mammals. FEBS Lett 582:2112–2119PubMedCrossRefGoogle Scholar
  29. Glebov OO, Bright NA, Nichols BJ (2006) Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nat Cell Biol 8:46–54PubMedCrossRefGoogle Scholar
  30. Golomb L, Abu-Abied M, Belausov E, Sadot E (2008) Different subcellular localizations and functions of Arabidopsis myosin VIII. BMC Plant Biol 8:3PubMedCrossRefGoogle Scholar
  31. Grebe M, Xu J, Mobius W, Ueda T, Nakano A, Geuze HJ, Rook MB, Scheres B (2003) Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Curr Biol 13:1378–1387PubMedCrossRefGoogle Scholar
  32. Guilherme A, Soriano NA, Bose S, Holik J, Bose A, Pomerleau DP, Furcinitti P, Leszyk J, Corvera S, Czech MP (2004) EHD2 and the novel EH domain binding protein EHBP1 couple endocytosis to the actin cytoskeleton. J Biol Chem 279:10593–10605PubMedCrossRefGoogle Scholar
  33. Hoshino H, Yoneda A, Kumagai F, Hasezawa S (2003) Roles of actin-depleted zone and preprophase band in determining the division site of higher-plant cells, a tobacco BY-2 cell line expressing GFP-tubulin. Protoplasma 222:157–165PubMedCrossRefGoogle Scholar
  34. Huang S, Blanchoin L, Kovar DR, Staiger CJ (2003) Arabidopsis capping protein (AtCP) is a heterodimer that regulates assembly at the barbed ends of actin filaments. J Biol Chem 278:44832–44842PubMedCrossRefGoogle Scholar
  35. Huckaba TM, Gay AC, Pantalena LF, Yang HC, Pon LA (2004) Live cell imaging of the assembly, disassembly, and actin cable-dependent movement of endosomes and actin patches in the budding yeast, Saccharomyces cerevisiae. J Cell Biol 167:519–530PubMedCrossRefGoogle Scholar
  36. Hussey PJ, Allwood EG, Smertenko AP (2002) Actin-binding proteins in the Arabidopsis genome database: properties of functionally distinct plant actin-depolymerizing factors/cofilins. Philos Trans R Soc Lond B Biol Sci 357:791–798PubMedCrossRefGoogle Scholar
  37. Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 5:619–633PubMedCrossRefGoogle Scholar
  38. Jones MA, Shen JJ, Fu Y, Li H, Yang Z, Grierson CS (2002) The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth. Plant Cell 14:763–776PubMedCrossRefGoogle Scholar
  39. Jurgens G (2005) Plant cytokinesis: fission by fusion. Trends Cell Biol 15:277–283PubMedCrossRefGoogle Scholar
  40. Kaksonen M, Sun Y, Drubin DG (2003) A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115:475–487PubMedCrossRefGoogle Scholar
  41. Kaksonen M, Toret CP, Drubin DG (2005) A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123:305–320PubMedCrossRefGoogle Scholar
  42. Kaksonen M, Toret CP, Drubin DG (2006) Harnessing actin dynamics for clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 7:404–414PubMedCrossRefGoogle Scholar
  43. Kalia M, Kumari S, Chadda R, Hill MM, Parton RG, Mayor S (2006) Arf6-independent GPI-anchored protein-enriched early endosomal compartments fuse with sorting endosomes via a Rab5/phosphatidylinositol-3’-kinase-dependent machinery. Mol Biol Cell 17:3689–3704PubMedCrossRefGoogle Scholar
  44. Karahara I, Suda J, Tahara H, Yokota E, Shimmen T, Misaki K, Yonemura S, Staehelin LA, Mineyuki Y (2009) The preprophase band is a localized center of clathrin-mediated endocytosis in late prophase cells of the onion cotyledon epidermis. Plant J 57:819–831PubMedCrossRefGoogle Scholar
  45. King SM (2002) Dyneins motor on in plants. Traffic 3:930–931PubMedCrossRefGoogle Scholar
  46. Kitakura S, Vanneste S, Robert S, Lofke C, Teichmann T, Tanaka H, Friml J (2011) Clathrin mediates endocytosis and polar distribution of PIN auxin transporters in Arabidopsis. Plant Cell 23:1920–1931PubMedCrossRefGoogle Scholar
  47. Kleine-Vehn J, Leitner J, Zwiewka M, Sauer M, Abas L, Luschnig C, Friml J (2008) Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proc Natl Acad Sci U S A 105:17812–17817PubMedCrossRefGoogle Scholar
  48. Konopka CA, Backues SK, Bednarek SY (2008) Dynamics of Arabidopsis dynamin-related protein 1C and a clathrin light chain at the plasma membrane. Plant Cell 20:1363–1380PubMedCrossRefGoogle Scholar
  49. Kotchoni SO, Zakharova T, Mallery EL, Le J, El-Assal Sel D, Szymanski DB (2009) The association of the Arabidopsis actin-related protein2/3 complex with cell membranes is linked to its assembly status but not its activation. Plant Physiol 151:2095–2109PubMedCrossRefGoogle Scholar
  50. Lam BC, Sage TL, Bianchi F, Blumwald E (2001) Role of SH3 domain-containing proteins in clathrin-mediated vesicle trafficking in Arabidopsis. Plant Cell 13:2499–2512PubMedGoogle Scholar
  51. Lee YR, Giang HM, Liu B (2001) A novel plant kinesin-related protein specifically associates with the phragmoplast organelles. Plant Cell 13:2427–2439PubMedGoogle Scholar
  52. Lee YR, Liu B (2004) Cytoskeletal motors in Arabidopsis. Sixty-one kinesins and seventeen myosins. Plant Physiol 136:3877–3883PubMedCrossRefGoogle Scholar
  53. Li R, Liu P, Wan Y, Chen T, Wang Q, Mettbach U, Baluška F, Šamaj J, Fang X, Lucas WJ, Lin J (2012) A membrane microdomain-associated protein, Arabidopsis Flot1, is involved in a clathrin-independent endocytic pathway and is required for seedling development. Plant Cell. doi: 10.1105/tpc.112.095695 Google Scholar
  54. Li S, Blanchoin L, Yang Z, Lord EM (2003) The putative Arabidopsis arp2/3 complex controls leaf cell morphogenesis. Plant Physiol 132:2034–2044PubMedCrossRefGoogle Scholar
  55. Li X, Wang X, Yang Y, Li R, He Q, Fang X, Luu DT, Maurel C, Lin J (2011) Single-molecule analysis of PIP2;1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation. Plant Cell 23:3780–3797PubMedCrossRefGoogle Scholar
  56. Lu L, Lee YR, Pan R, Maloof JN, Liu B (2005) An internal motor kinesin is associated with the Golgi apparatus and plays a role in trichome morphogenesis in Arabidopsis. Mol Biol Cell 16:811–823PubMedCrossRefGoogle Scholar
  57. Mathur J, Mathur N, Kirik V, Kernebeck B, Srinivas BP, Hulskamp M (2003) Arabidopsis CROOKED encodes for the smallest subunit of the ARP2/3 complex and controls cell shape by region specific fine F-actin formation. Development 130:3137–3146PubMedCrossRefGoogle Scholar
  58. Merrifield CJ, Perrais D, Zenisek D (2005) Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell 121:593–606PubMedCrossRefGoogle Scholar
  59. Molendijk AJ, Bischoff F, Rajendrakumar CSV, Frim J, Braun M, Gilroy S, Palme K (2001) Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. EMBO J 20:2779–2788PubMedCrossRefGoogle Scholar
  60. Morris SM, Arden SD, Roberts RC, Kendrick-Jones J, Cooper JA, Luzio JP, Buss F (2002) Myosin VI binds to and localises with Dab2, potentially linking receptor-mediated endocytosis and the actin cytoskeleton. Traffic 3:331–341PubMedCrossRefGoogle Scholar
  61. Mundy DI, Machleidt T, Ying YS, Anderson RG, Bloom GS (2002) Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton. J Cell Sci 115:4327–4339PubMedCrossRefGoogle Scholar
  62. Nabi IR, Le PU (2003) Caveolae/raft-dependent endocytosis. J Cell Biol 161:673–677PubMedCrossRefGoogle Scholar
  63. Nagawa S, Lin D, Dhonukshe P, Zhang X, Friml J, Scheres B, Fu Y, Yang Z (2012) ROP GTPase-dependent actin microfilaments promote PIN1 polarization by localized inhibition of clathrin-dependent endocytosis. PLoS Biol 10:e1001299PubMedCrossRefGoogle Scholar
  64. Pelkmans L, Puntener D, Helenius A (2002) Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296:535–539PubMedCrossRefGoogle Scholar
  65. Peremyslov VV, Prokhnevsky AI, Dolja VV (2010) Class XI myosinss are required for development, cell expansion, and F-Actin organization in Arabidopsis. Plant Cell 22:1883–1897PubMedCrossRefGoogle Scholar
  66. Reichelt S, Knight AE, Hodge TP, Baluška F, Šamaj J, Volkmann D, Kendrick-Jones J (1999) Characterization of the unconventional myosin VIII in plant cells and its localization at the post-cytokinetic cell wall. Plant J 19:555–567PubMedCrossRefGoogle Scholar
  67. Robatzek S, Chinchilla D, Boller T (2006) Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev 20:537–542PubMedCrossRefGoogle Scholar
  68. Ross JL, Ali MY, Warshaw DM (2008) Cargo transport: molecular motors navigate a complex cytoskeleton. Curr Opin Cell Biol 20:41–47PubMedCrossRefGoogle Scholar
  69. Šamaj J, Baluška F, Voigt B, Schlicht M, Volkmann D, Menzel D (2004) Endocytosis, actin cytoskeleton, and signaling. Plant Physiol 135:1150–1161PubMedCrossRefGoogle Scholar
  70. Sattarzadeh A, Franzen R, Schmelzer E (2008) The Arabidopsis class VIII myosin ATM2 is involved in endocytosis. Cell Motil Cytoskeleton 65:457–468PubMedCrossRefGoogle Scholar
  71. Sawa M, Suetsugu S, Sugimoto A, Miki H, Yamamoto M, Takenawa T (2003) Essential role of the C. Elegans Arp2/3 complex in cell migration during ventral enclosure. J Cell Sci 116:1505–1518PubMedCrossRefGoogle Scholar
  72. Smythe E, Ayscough KR (2006) Actin regulation in endocytosis. J Cell Sci 119:4589–4598PubMedCrossRefGoogle Scholar
  73. Soldati T, Schliwa M (2006) Powering membrane traffic in endocytosis and recycling. Nat Rev Mol Cell Biol 7:897–908PubMedCrossRefGoogle Scholar
  74. Subtil A, Dautry-Varsat A (1997) Microtubule depolymerization inhibits clathrin coated-pit internalization in non-adherent cell lines while interleukin 2 endocytosis is not affected. J Cell Sci 110(19):2441–2447PubMedGoogle Scholar
  75. Sun Y, Martin AC, Drubin DG (2006) Endocytic internalization in budding yeast requires coordinated actin nucleation and myosin motor activity. Dev Cell 11:33–46PubMedCrossRefGoogle Scholar
  76. Swanson JA (2008) Shaping cups into phagosomes and macropinosomes. Nat Rev Mol Cell Biol 9:639–649PubMedCrossRefGoogle Scholar
  77. Szymanski DB (2005) Breaking the WAVE complex: the point of Arabidopsis trichomes. Curr Opin Plant Biol 8:103–112PubMedCrossRefGoogle Scholar
  78. Tian M, Chaudhry F, Ruzicka DR, Meagher RB, Staiger CJ, Day B (2009) Arabidopsis actin-depolymerizing factor AtADF4 mediates defense signal transduction triggered by the Pseudomonas syringae effector AvrPphB. Plant Physiol 150:815–824PubMedCrossRefGoogle Scholar
  79. Vanstraelen M, Torres Acosta JA, De Veylder L, Inze D, Geelen D (2004) A plant-specific subclass of C-terminal kinesins contains a conserved a-type cyclin-dependent kinase site implicated in folding and dimerization. Plant Physiol 135:1417–1429PubMedCrossRefGoogle Scholar
  80. Vanstraelen M, Van Damme D, De Rycke R, Mylle E, Inze D, Geelen D (2006) Cell cycle-dependent targeting of a kinesin at the plasma membrane demarcates the division site in plant cells. Curr Biol 16:308–314PubMedCrossRefGoogle Scholar
  81. Voigt B, Timmers AC, Šamaj J, Hlavacka A, Ueda T, Preuss M, Nielsen E, Mathur J, Emans N, Stenmark H, Nakano A, Baluška F, Menzel D (2005) Actin-based motility of endosomes is linked to the polar tip growth of root hairs. Eur J Cell Biol 84:609–621PubMedCrossRefGoogle Scholar
  82. Wang X, Teng Y, Wang Q, Li X, Sheng X, Zheng M, Šamaj J, Baluška F, Lin J (2006) Imaging of dynamic secretory vesicles in living pollen tubes of Picea meyeri using evanescent wave microscopy. Plant Physiol 141:1591–1603PubMedCrossRefGoogle Scholar
  83. Wang YS, Motes CM, Mohamalawari DR, Blancaflor EB (2004) Green fluorescent protein fusions to Arabidopsis fimbrin 1 for spatio-temporal imaging of F-actin dynamics in roots. Cell Motil Cytoskeleton 59:79–93PubMedCrossRefGoogle Scholar
  84. Winter DC, Choe EY, Li R (1999) Genetic dissection of the budding yeast Arp2/3 complex: a comparison of the in vivo and structural roles of individual subunits. Proc Natl Acad Sci U S A 96:7288–7293PubMedCrossRefGoogle Scholar
  85. Xu T, Wen M, Nagawa S, Fu Y, Chen JG, Wu MJ, Perrot-Rechenmann C, Friml J, Jones AM, Yang Z (2010) Cell surface- and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 143:99–110PubMedCrossRefGoogle Scholar
  86. Xu XM, Zhao Q, Rodrigo-Peiris T, Brkljacic J, He CS, Muller S, Meier I (2008) RanGAP1 is a continuous marker of the Arabidopsis cell division plane. Proc Natl Acad Sci U S A 105:18637–18642PubMedCrossRefGoogle Scholar
  87. Yarar D, Waterman-Storer CM, Schmid SL (2005) A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis. Mol Biol Cell 16:964–975PubMedCrossRefGoogle Scholar
  88. Zhang Y, He J, Lee D, McCormick S (2010) Interdependence of endomembrane trafficking and actin dynamics during polarized growth of Arabidopsis pollen tubes. Plant Physiol 152:2200–2210PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.National Centre for Biological Sciences (TIFR)GKVK CampusBangaloreIndia
  2. 2.Department of BiologyUtrecht UniversityCH UtrechtThe Netherlands

Personalised recommendations