Skip to main content

Application of Vector-Type Super Computer to Understanding Giant Earthquakes and Aftershocks on Subduction Plate Boundaries

  • Conference paper
  • First Online:
  • 572 Accesses

Abstract

In order to know why megathrust earthquakes have occurred in subduction zones such as the 2011 off the Pacific Coast of Tohoku Earthquake in Japan, we reconsider previous numerical simulation results and try to apply them to actual fields such as the 2004 Sumatra-Andaman earthquake and large interplate aftershocks of the 2011 Tohoku Earthquake. From this study, we propose that one of the possible reasons of pre-seismic change of the 2011 Tohoku Earthquake might have been smaller for its magnitude because its fault was composed smaller (M 7 class) asperities including the off Miyagi earthquakes as occurred in 1978 and 2005. We also suggest that the next megathrust earthquake along Nankai Trough in southwest Japan may have detectable pre-seismic change because it is composed of three large (M 8 class) asperities in Tokai, Tonankai and Nankai region. Our trial numerical simulation results by using vector-type super computer show that Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) may be useful to detect the pre-seismic change of a possible M 9 class coupled megathrust earthquake composed of Tokai, Tonankai, Nankai and Hyuga-nada asperities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ariyoshi, K., T. Matsuzawa, Y. Yabe, N. Kato, R. Hino, A. Hasegawa, and Y. Kaneda, Character of slip and stress due to interaction between fault segments along the dip direction of a subduction zone, J. Geodyn., 48, 55–67, doi:10.1016/j.jog.2009.06.001, (2009).

    Google Scholar 

  2. Ariyoshi, K., T. Matsuzawa, Y. Yabe, N. Kato, R. Hino, and A. Hasegawa, Consideration on the 2011 off the Pacific Coast of Tohoku Earthquake and the 2004 Sumatra Earthquake, JAMSTEC Rep. Res. Dev., 13, 17–33 (2011).

    Google Scholar 

  3. Ariyoshi, K. and Y. Kaneda, Characteristics of Interaction between Interplate Earthquakes from the view of Multi-scale Simulations, Nova Publication, in press (2012).

    Google Scholar 

  4. Ariyoshi, K. and Y. Kaneda, Frictional Characteristics in Deeper Part of Seismogenic Transition Zones on a Subduction Plate Boundary, Earthquake Research and Analysis - Seismology, Seismotectonic and Earthquake Geology, Sebastiano D’Amico (Ed.), ISBN: 978-953-307-991-2, InTech, pp. 402, 105–124, doi:10.5772/28884, (2012).

    Google Scholar 

  5. Bilham, R., R. Engdahl, N. Feldl, and S.P. Satyabala, Partial and complete rupture of the Indo-Andaman plate boundary 1847–2004, Seismo. Res. Lett., 76(3), 299–311 (2005).

    Google Scholar 

  6. Briggs, R. W., K. Sieh, A. J. Meltzner, D. Natawidjaja, J. Galetzka, B. Suwargadi, Y. Hsu, M. Simons, N. Hananto, I. Suprihanto, D. Prayudi, J. Avouac, L. Prawirodirdjo, and Y. Bock, Deformation and slip along the Sunda megathrust in the great 2005, Nias–Simeulue earthquake, Science, 311, 1897–1901 (2006).

    Google Scholar 

  7. Coffin, M.F., L.M. Gahagan, and L.A. Lawver, Present-day Plate Boundary Digital Data Compilation, University of Texas Institute for Geophysics Technical Report, 174, 5 (1998).

    Google Scholar 

  8. Dieterich, J.H., Modeling of rock friction: 1. Experimental results and constitutive equations, J. Geophys. Res., 84, 2161–2168 (1979).

    Google Scholar 

  9. Fujii, Y. and M. Matsu’ura, Regional Difference in Scaling Laws for Large Earthquakes and its Tectonic Implication, Pure Appl. Geophys., 157, 2283–2302 (2000).

    Google Scholar 

  10. Furumura, T., K. Imai, and T. Maeda, A revised tsunami source model for the 1707 Hoei earthquake and simulation of tsunami inundation of Ryujin Lake, Kyushu, Japan, J. Geophys. Res., 116, B02308, doi:10.1029/2010JB007918, (2011).

    Google Scholar 

  11. Geospatial Information Authority of Japan, The 2011 off the Pacific coast of Tohoku Earthquake: Postseismic Slip Distribution Model (Preliminary), http://www.gsi.go.jp/cais/topic110315.2-index-e.html, (2011)

  12. Hsu, Y., M. Simons, J. Avouac, J. Galetzka, K. Sieh, M. Chlieh, D. Natawidjaja, L. Prawirodirdjo, and Y. Bock, Frictional afterslip following the 2005 Nias–Simeulue earthquake, Sumatra, Science, 312, 1921–1926 (2006).

    Google Scholar 

  13. Japan Meteorological Agency, The 2011 off the Pacific coast of Tohoku Earthquake 15 th report (in Japanese), http://www.jma.go.jp/jma/press/1103/13b/kaisetsu201103131255.pdf, (2011).

  14. Kanamori, H. and D.L. Anderson, Theoretical basis of some empirical relations in seismology, Bull. Seism. Soc. Am., 65, 1073–1095 (1975).

    Google Scholar 

  15. Kato, N., Numerical simulation of recurrence of asperity rupture in the Sanriku region, northeastern Japan, J. Geophys. Res., 113, B06302, doi:10.1029/2007JB005515, (2008).

    Google Scholar 

  16. Kido, M., H. Fujimoto, S. Miura, Y. Osada, K. Tsuka, and T. Tabei, Seafloor displacement at Kumano-nada caused by the 2004 off Kii Peninsula earthquakes, detected through repeated GPS/Acoustic surveys, Earth Planets Space, 58, 911–915 (2006).

    Google Scholar 

  17. Konca, A.O., J. Avouac, A. Sladen, A.J. Meltzner, K. Sieh, P. Fang, Z. Li, J. Galetzka, J. Genrich, M. Chlieh, D.H. Natawidjaja, Y. Bock, E.J. Fielding, C. Ji, and D.V. Helmberger, Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence, Nature, 456, 631–635 (2008).

    Google Scholar 

  18. Kondo, H., Y. Awata,. Emre, A. Doan, S. zalp, F. Tokay, C. Yildirim, T. Yoshioka, and K. Okumura, Slip Distribution, Fault Geometry, and Fault Segmentation of the 1944 Bolu-Gerede Earthquake Rupture, North Anatolian Fault, Turkey, Bull. Seism. Soc. Am., 95, 1234–1249 (2005).

    Google Scholar 

  19. Lay, T., H. Kanamori, C.J. Ammon, M. Nettles, S.N. Ward, R.C. Aster, S.L. Beck, S.L. Bilek, M.R. Brudzinski, R. Butler, H.R. DeShon, G. Ekstrm, K. Satake, and S. Sipkin, The great Sumatra-Andaman earthquake of 26 December 2004, Science, 308, 1127–1133, doi:10.1126/science.1112250, (2005).

    Google Scholar 

  20. Mogi,K., Two grave issues concerning the expected Tokai Earthquake, Earth Planets Space, 56, li–lxvi (2004).

    Google Scholar 

  21. Nagai, R., M. Kikuchi, and Y. Yamanaka, Comparative study on the source processes of recent large earthquakes in Sanriku-oki region: The 1968 Tokachi-oki earthquake and the 1994 Sanriku-oki earthquake, J. Seismol. Soc. Jpn., 54, 267–280, in Japanese, (2001).

    Google Scholar 

  22. National Geophysical Data Center, Global Significant Earthquake Database, http://www.ngdc.noaa.gov/hazard/earthqk.shtml, (2011).

  23. Okada, Y., Internal deformation due to shear and tensile faults in a halfspace, Bull. Seism. Soc. Am., 82, 1018–1040 (1992).

    Google Scholar 

  24. Peter, B., An updated digital model of plate boundaries: Geochemistry, Geophysics, Geosystems, 4(3), 1027, doi:10.1029/2001GC000252, (2003).

    Google Scholar 

  25. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes, 2nd. ed., Cambridge Univ. Press, New York (1992).

    Google Scholar 

  26. Rani, S., Singh, S.J., Static deformation of a uniform half-space to a long dip-slip fault. Geophys. J. Int. 109, 469–476 (1992).

    Google Scholar 

  27. Rice, J.R., Spatio-temporal complexity of slip on a fault, J. Geophys. Res., 98, 9885–9907 (1993).

    Google Scholar 

  28. Romanowicz, B., Strike-slip earthquakes on quasi-vertical transcurrent faults: inferences for general scaling relations, Geophys. Res. Lett., 19, 481–484 (1992).

    Google Scholar 

  29. Ruina, A., Slip instability and state variable friction laws, J. Geophys. Res., 88, 10,359–10,370 (1983).

    Google Scholar 

  30. Sato, H., Some precursors prior to recent great earthquakes along the Nankai trough, J. Phys. Earth, 25, S115–S121 (Suppl.) (1977).

    Google Scholar 

  31. Savage, J.C., A dislocation model of strain accumulation and release at a subduction zone, J. Geophys. Res., 88, 4984–4996 (1983).

    Google Scholar 

  32. Scholz, C.H., Scaling laws for large earthquakes; consequences for physical models, Bull. Seism. Soc. Am. 72, 1–14 (1982).

    Google Scholar 

  33. Sieh, K., The repetition of large-earthquake ruptures, Proc. Natl. Acad. Sci., 93, 3764–3771 (1996).

    Google Scholar 

  34. The Headquarters for Earthquake Research Promotion, Long-term Evaluation of seismic activity off Boso to Sanriku (in Japanese), http://www.jishin.go.jp/main/chousa/kaikou_pdf/sanriku_boso.pdf, (2002)

  35. The Headquarters for Earthquake Research Promotion, Long-term Evaluation of occurrence potentials or subduction-zone earthquakes around Hyuga-nada and Nansei island (in Japanese), http://www.jishin.go.jp/main/chousa/04feb_hyuganada/index.html, (2004)

  36. Uchida, N., A. Hasegawa, T. Matsuzawa, and T. Igarashi, Pre- and post-seismic slow slip on the plate boundary off Sanriku, NE Japan associated with three interplate earthquakes as estimated from small repeating earthquake data, Tectonophysics, 385, 1–15 (2004).

    Google Scholar 

  37. Wiseman, K. and R. Brgmann, Stress and Seismicity Changes on the Sunda Megathrust Preceding the 2007 Mw 8.4 Earthquake, Bull. Seism. Soc. Am., 101(1), 313–326 (2011).

    Google Scholar 

  38. Yamanaka, Y., Kikuchi, M., Asperity map along the subduction zone in northeastern Japan inferred from regional seismic data, J. Geophys. Res. 109, doi:10.1029/2003JB002683, (2004).

    Google Scholar 

Download references

Acknowledgements

The authors would like to deeply appreciate Professor H. Kobayashi for his inviting me to the Workshop on Sustained Simulation Performance 2012. The authors also thank DONET members and Tohoku University researchers. This study was partly supported by supercomputing resources at Cyberscience Center in Tohoku University and at Earth Simulator in JAMSTEC and by Grant-in-Aid (KAKENHI) for Young Scientists 23710212 and for Scientific Research on innovative Areas 20190449.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisuke Ariyoshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ariyoshi, K. et al. (2013). Application of Vector-Type Super Computer to Understanding Giant Earthquakes and Aftershocks on Subduction Plate Boundaries. In: Resch, M., Wang, X., Bez, W., Focht, E., Kobayashi, H. (eds) Sustained Simulation Performance 2012. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32454-3_6

Download citation

Publish with us

Policies and ethics