Massive Computation for Femtosecond Dynamics in Condensed Matters

  • Yoshiyuki Miyamoto
Conference paper


In this report, numerical simulation on non-thermal dynamics in condensed matters conducted by femtosecond laser shot is presented. Electron–ion dynamics was treated within the framework of the time-dependent density functional theory for electrons coupled with classical molecular dynamics for ions. The formalisms and application of this simulation to photo-exfoliation of graphene from graphite surface and photo-disintegration of molecules inside a carbon nanotube are presented. Heavy tasks for memory access in this simulation scheme will also be mentioned.


Femtosecond Laser Laser Field Sham Equation Graphene Exfoliation Discretized Grid Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



All calculations shown in this work were done by using the Earth Simulator. These works were done under collaboration with D. Tománek, H. Zhang and A. Rubio.


  1. 1.
    Shimotsuma Y, Hirao K, Kazansky P. G, and Qiu J (2005): Three-Dimensional Micro- and Nano-Fabrication in Transparent Materials by Femtosecond Laser. Jpn. J. Appl. Phys. 44, 4735–4748Google Scholar
  2. 2.
    Kohn W, and Sham LJ (1965): Self-Consistent Equations Includinf Exchange and Correlation. Phys. Rev. 140: A1133–A1138Google Scholar
  3. 3.
    Hohenberg P and Kohn W (1964): Inhomogeneous Electron Gas. Phys. Rev. 136: B864–B871Google Scholar
  4. 4.
    Runge E and Gross EKU (1984): Density-Functional Theory for Time-Dependent System. Phys. Rev. Lett. 52:997–1000.Google Scholar
  5. 5.
    Suzuki M (1992):General Nonsymmetric Higher-Order Decomposition of Exponential Operators and Symplectic Integrators. J. Phys. Soc. Jpn, 61:3015–3019Google Scholar
  6. 6.
    Sugino O and Miyamoto Y (1999): Density-functional approach to electron dynsmics: Stable simulation under a self-consisten field. Phys. Rev.B59:2579–2586; (2002) Phys. Rev. B66:089901 (E).Google Scholar
  7. 7.
    Ehrenfest P (1927).: Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik. Z. Phys. 45:455–457Google Scholar
  8. 8.
    Miyamoto Y and Zhang H (2008): Testing the numerical stability of time-dependent density functional simulations using the Suzuki–Trotter formula. Phys. Rev. B77:165123-1–165123-5Google Scholar
  9. 9.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, and Firsov AA: (2004) Electric Field Effect in Atomically Thin Carbon Films, Science 306:666–669Google Scholar
  10. 10.
    Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, and Kong J (2009): Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Lett. 9:30–35Google Scholar
  11. 11.
    Li X, Gai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jun I, Tutuc E, Banerjee SK, Colombo L, and Ruoff RS (2009): Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils, Science 324:1312Google Scholar
  12. 12.
    Tromp RM and Hannon JB (2009): Thermodynamics and Kinetic of Graphene Growth on SiC(0001), Phys. Rev. Lett. 102:106104-1–106104-4Google Scholar
  13. 13.
    Carbone F, Baum P, Rudolf P, and Zewail AH (2008): Structural Preablation Dynamics of Graphene Observed by Ultrafast Electron Crystallography, Phys. Rev. Lett. 100:035501-1–035501-4Google Scholar
  14. 14.
    Raman RK, Murooka Y, Ruan CY, Yang T, Berber S and Tománek D (2008): Direct Observation of Optically Induced Transient Structures in Graphite Using Ultrafast Electron Crystallography, Phys. Rev. Lett. 101:077401-1–077401-4.Google Scholar
  15. 15.
    Jeschke HO, Garcia ME and Bennemann KH (2001): Theory for the Ultrafast Ablation of Graphite Films, Phys. Rev. Lett. 87:015003-1–015003-4Google Scholar
  16. 16.
    Ajyayam PM and Iijima S (1993): Capillarity-induced filling of carbon nanotubes. Nature, 361:333–334Google Scholar
  17. 17.
    Yanagi K, Iakoubovskii K, Kazaoui S, Minami N, Maniwa Y, Miyata Y, and Kataura H (2006): Light-harvesting function of β-carotene inside carbon nanotubes, Phys. Rev. B74:155420-1–155420-6Google Scholar
  18. 18.
    Miyamoto Y, Zhang H, and Tománek D (2010): Photoexfoliation of Graphene from Graphite: An Ab Initio Study, Phys. Rev. Lett. 104:208302-1–208302-4Google Scholar
  19. 19.
    Castro A, Marques MAL, Alonso JA, Bertsch GF, and Rubio A (2004): Excited states dynamics in time-dependent density functional theory, Eur. Phys. D28:211–218Google Scholar
  20. 20.
    Taguchi K, Haruyama J, and Watanabe K (2009): Laser-Driven Molecular Dissociation: Time-Dependent Density Functional Theory and Molecular Dynamics Simulations, J. Phys. Soc. Jpn, 78:0947071-1–094707-6Google Scholar
  21. 21.
    Zhang H and Miyamoto Y (2009): Modulation of alternating electric field inside photoexcited carbon nanotubes, Appl. Phys. Lett., 95:053109-1–053109-3Google Scholar
  22. 22.
    Miyamoto Y, Zhang H, and Rubio A (2010): First-Principles Simulation of Chemical Reactions in an HCl Molecule Embedded inside a C or BN Nanotube Induced by Ultrafast Laser Pulses, Phys. Rev. Lett., 105:248301-1–248301-4Google Scholar
  23. 23.
    Kleinman L and Bylander DM (1982): Efficacious Form for Model Pseudopotentials, Phys. Rev. Lett., 48:1424–1428Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Nanosystem Res. InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations