A Validity Index Based on Symmetry: Application to Satellite Image Segmentation

  • Sanghamitra Bandyopadhyay
  • Sriparna Saha


Some existing cluster validity indices are discussed in this chapter. Thereafter a newly developed symmetry-based cluster validity index, named Sym-index, is described in detail, and an intuitive explanation of how the different components of Sym-index compete with each other to identify a proper clustering is provided. A mathematical justification of the new index is derived by establishing its relationship with the well-known Dunn’s index. Experimental results show that Sym-index is able to detect the appropriate number of clusters from a given data set as long as the clusters possess the property of point-based symmetry, irrespective of their geometrical shape and convexity. The point symmetry-based distance is incorporated into eight existing cluster validity indices. These indices exploit the property of point symmetry to indicate both the appropriate number of clusters as well as the appropriate partitioning. Finally, an application of Sym-index in conjunction with the GAPS clustering technique is described for satellite image segmentation.


Validity Index Proper Number Cluster Validity Index Silhouette Index Davies Bouldin Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 5.
    Anderson, T.W., Sclove, S.L.: Introduction to the Statistical Analysis of Data. Houghton Mifflin, Boston (1978) zbMATHGoogle Scholar
  2. 18.
    Bandyopadhyay, S., Maulik, U.: Non-parametric genetic clustering: Comparison of validity indices. IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev. 31(1), 120–125 (2001) CrossRefGoogle Scholar
  3. 23.
    Bandyopadhyay, S., Mukhopadhyay, A., Maulik, U.: An improved algorithm for clustering gene expression data. Bioinformatics 23(21), 2859–2865 (2007) CrossRefGoogle Scholar
  4. 27.
    Bandyopadhyay, S., Saha, S.: GAPS: A clustering method using a new point symmetry based distance measure. Pattern Recognit. 40(12), 3430–3451 (2007) zbMATHCrossRefGoogle Scholar
  5. 28.
    Bandyopadhyay, S., Saha, S.: A point symmetry based clustering technique for automatic evolution of clusters. IEEE Trans. Knowl. Data Eng. 20(11), 1–17 (2008) CrossRefGoogle Scholar
  6. 38.
    Bezdek, J.C., Pal, N.R.: Some new indexes of cluster validity. IEEE Trans. Syst. Man Cybern. 28(3), 301–315 (1998) CrossRefGoogle Scholar
  7. 44.
    Bradley, P.S., Fayyad, U.M., Reina, C.: Scaling EM (expectation maximization) clustering to large databases. Tech. rep., Microsoft Research Center (1998) Google Scholar
  8. 47.
    Calinski, R.B., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat., Theory Methods 3(1), 1–27 (1974) MathSciNetzbMATHGoogle Scholar
  9. 58.
    Chou, C.H., Su, M.C., Lai, E.: Symmetry as a new measure for cluster validity. In: 2nd WSEAS Int. Conf. on Scientific Computation and Soft Computing, Crete, Greece, pp. 209–213 (2002) Google Scholar
  10. 59.
    Chou, C.H., Su, M.C., Lai, E.: A new cluster validity measure and its application to image compression. Pattern Anal. Appl. 7(2), 205–220 (2004) MathSciNetCrossRefGoogle Scholar
  11. 73.
    Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1(4), 224–227 (1979) CrossRefGoogle Scholar
  12. 87.
    Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 3(3), 32–57 (1973) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 96.
    Everitt, B.S., Landau, S., Leese, M.: Cluster Analysis. Arnold, London (2001) zbMATHGoogle Scholar
  14. 107.
    Fukuyama, Y., Sugeno, M.: A new method of choosing the number of clusters for the fuzzy c-means method. In: Proc. of the Fifth Fuzzy Systems Symposium, pp. 247–250 (1989) Google Scholar
  15. 146.
    Jardine, N., Sibson, R.: Mathematical Taxonomy. Wiley, New York (1971) zbMATHGoogle Scholar
  16. 154.
    Kim, D.J., Park, Y.W., Park, D.J.: A novel validity index for determination of the optimal number of clusters. IEICE Trans. Inf. Syst. D-E84(2), 281–285 (2001) Google Scholar
  17. 163.
    Kohonen, T.: Self-Organization and Associative Memory, 3rd edn. Springer, New York (1989) CrossRefGoogle Scholar
  18. 172.
    Kwon, S.H.: Cluster validity index for fuzzy clustering. Electron. Lett. 34(22), 2176–2177 (1998) CrossRefGoogle Scholar
  19. 188.
    Maulik, U., Bandyopadhyay, S.: Genetic algorithm based clustering technique. Pattern Recognit. 33(9), 1455–1465 (2000) CrossRefGoogle Scholar
  20. 189.
    Maulik, U., Bandyopadhyay, S.: Performance evaluation of some clustering algorithms and validity indices. IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1650–1654 (2002) CrossRefGoogle Scholar
  21. 190.
    Maulik, U., Bandyopadhyay, S.: Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification. IEEE Trans. Geosci. Remote Sens. 41(5), 1075–1081 (2003) CrossRefGoogle Scholar
  22. 212.
    Pakhira, M.K., Maulik, U., Bandyopadhyay, S.: Validity index for crisp and fuzzy clusters. Pattern Recognit. 37(3), 487–501 (2004) zbMATHCrossRefGoogle Scholar
  23. 230.
    Raftery, A.: A note on Bayes factors for log-linear contingency table models with vague prior information. J. R. Stat. Soc. 48(2), 249–250 (1986) MathSciNetzbMATHGoogle Scholar
  24. 232.
    Richards, J.A.: Remote Sensing Digital Image Analysis: An Introduction. Springer, New York (1993) CrossRefGoogle Scholar
  25. 234.
    Rousseeuw, P.: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987) zbMATHCrossRefGoogle Scholar
  26. 240.
    Saha, S., Bandyopadhyay, S.: A new point symmetry based fuzzy genetic clustering technique for automatic evolution of clusters. Inf. Sci. 179(19), 3230–3246 (2009) zbMATHCrossRefGoogle Scholar
  27. 243.
    Saha, S., Bandyopadhyay, S.: Application of a new symmetry based cluster validity index for satellite image segmentation. IEEE Geosci. Remote Sens. Lett. 5(2), 166–170 (2008) CrossRefGoogle Scholar
  28. 244.
    Saha, S., Bandyopadhyay, S.: Performance evaluation of some symmetry based cluster validity indices. IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev. 39(4), 420–425 (2009) CrossRefGoogle Scholar
  29. 247.
    Saha, S., Maulik, U.: Use of symmetry and stability for data clustering. Evol. Intell. 3(3-4), 103–122 (2010) zbMATHCrossRefGoogle Scholar
  30. 262.
    Srinivas, M., Patnaik, L.M.: Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Trans. Syst. Man Cybern. 24(4), 656–667 (1994) CrossRefGoogle Scholar
  31. 266.
    Su, M.C., Chou, C.H.: A modified version of the K-means algorithm with a distance based on cluster symmetry. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 674–680 (2001) CrossRefGoogle Scholar
  32. 295.
    Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 13(8), 841–847 (1991) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sanghamitra Bandyopadhyay
    • 1
  • Sriparna Saha
    • 2
  1. 1.Machine Intelligence UnitIndian Statistical InstituteKolkataIndia
  2. 2.Dept. of Computer ScienceIndian Institute of TechnologyPatnaIndia

Personalised recommendations