HPC - Stability Simulation

  • C. Brecher
  • R. Hermes
  • M. Esser
Part of the Lecture Notes in Production Engineering book series (LNPE)


The prediction of stable process parameters to maximize the productivity of milling machines has been an important field of research for a long time. In the past, simulation tools allowing an assessment of the process stability have been created. Nevertheless, the accuracy of predictions by simulation is not yet high enough to make efficient use of stability simulation in production planning. In this context, the article presents developments in the field of modeling the dynamic machine and process behavior for process machine interaction simulation in the field of high performance cutting processes (HPC). On the process side, a complex force model, which takes into account the effects of a phase shift between force generation and chip thickness variation, is introduced. Also, an analysis of fast-rotating main spindle systems has been carried out, which considers variations in the dynamic compliance behavior at the tool center point (TCP) due to rotor dynamic effects and variation of the bearing rigidity. With the Prime Cut software package, a calculation program is presented, which includes the state of the art and new developments in the field of stability simulation.


Mode Shape Spindle Speed Chip Thickness Compliance Behavior Passive Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abele, E., Munirathman, M., Tschannerl, M.: Hochgeschwindigkeitsbearbeitung (HSC) - technologische Leistungsfähigkeit und noch zu überwindende Hindernisse. In: Proceedings CIRP Int. Conference High Performance Cutting, Aachen (2004)Google Scholar
  2. 2.
    Altintas, Y., Eynian, M., Onozuka, H.: Identification of Dynamic Cutting Force Coefficients and Chatter Stability with Process Damping. Annals of the CIRP, Jg.57, H.1, S.371–S.374 (2008)Google Scholar
  3. 3.
    Altintas, Y., Weck, M.: Chatter Stability of Metal Cutting and Grinding. Annals of the CIRP, Jg. 53, H.2, S.619–S.642 (2004)CrossRefGoogle Scholar
  4. 4.
    Andrae, P.: Hochleistungszerspanung von Aluminiumknetlegierungen. Diss. Universität Hannover (2002)Google Scholar
  5. 5.
    Brecher, C., Esser, M., Paepenmüller, F.: Motor Spindles for HPC: Testing and Chatter Simulation. In: Proceedings 2nd CIRP Int. Conference High Performance Cutting, Vancouver, Canada (2006)Google Scholar
  6. 6.
    Brecher, C., Esser, M., Witt, S.: Interaction of Manufacturing Process and Machine Tool. Annals of the CIRP, H. 58 (2009)Google Scholar
  7. 7.
    Brecher, C., Witt, S.: Static, Dynamic and Thermal Behaviour of Machine Tools with Regard to HPC. In: Proceedings CIRP Int. Conference High Performance Cutting, Aachen (2004)Google Scholar
  8. 8.
    Butz, F.: Gestaltung der Loslagerung von Werkzeugmaschinenspindeln. Shaker, Aachen (2007)Google Scholar
  9. 9.
    Clancy, B.E., Shin, Y.C.: A Comprehensive Chatter Prediction Model for Face Turning Operation Including Tool Wear Effect. International Journal of Machine Tools and Manufacture Jg.42, S.1035–S.1044 (2002)Google Scholar
  10. 10.
    Dudzinski, D., Molinari, A.: Metal cutting and high speed machining. Kluwer, Bosten (2002)Google Scholar
  11. 11.
    Esser, M.:: Stabilitätssimulation für das HPC-Fräsen. Dissertation. Aachen. RWTH Aachen, Werkzeugmaschinenlabor, WZL (2010)Google Scholar
  12. 12.
    Großmann, K., Mühl, A., Löser, M.: Prognose von Stabilitätsgrenzen für das Fräsen. ZWF Jg.101, H.7/8, S.416–S.421 (2006)Google Scholar
  13. 13.
    Kals, H.J.J.: On the Calculation of Stability Charts on the Basis of the Damping and the Stiffness of the Cutting Process. Annals of the CIRP, S.297–S.303 (1971)Google Scholar
  14. 14.
    Munirathnam, M., Kreis, M.: Das Gesamtpaket muss stimmen - Trendbericht: Systemdenken bei der HSC / HPC - Zerspanung steigert die Produktivität. In: WB Werkstatt und Betrieb, H. Bd 139 Heft 6, pp. S.42–S.50 (2006)Google Scholar
  15. 15.
    Peters, J., von Vanherck, P., van Brussel, H.: Die Messung der dynamischen Schnittkraftkoeffizienten. In: Fertigung, H. Bd 3 Heft 2, pp. S.57–S.65 (1972)Google Scholar
  16. 16.
    Schulz, A.: Systeme zur Schwingungsdämpfung von Werkzeugmaschinen. In: VDI-Fortschrittberichte, Jg. 651 pp. S.40–S.56 (2005)Google Scholar
  17. 17.
    Spachtholz, G.: Erweiterung des Leistungsbereiches von Spindellagern. Apprimus, Aachen (2008)Google Scholar
  18. 18.
    Tlusty, J.: Analysis of the State of Research in Cutting Dynamics. Annals of the CIRP, Jg. 27, H. 2, S.583–S.589 (1978)Google Scholar
  19. 19.
    van Brussel, H.: Dynamische Analyse van het Verspaningsproces. Katholieke Universiteit Leuven, Dissertation (1971)Google Scholar
  20. 20.
    Weck, M., Brecher, C.: Werkzeugmaschinen. Automatisierung von Maschinen und Anlagen, vol. 6. Springer, Auflage (2006)Google Scholar
  21. 21.
    Werntze, G.: Dynamische Schnittkraftkoeffizienten. Bestimmung mit Hilfe des Digitalrechners und Berücksichtigung im mathematischen Modell zur Stabilitätsanalyse. RWTH Aachen, Dissertation (1973)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • C. Brecher
    • 1
  • R. Hermes
    • 1
  • M. Esser
    • 1
  1. 1.Laboratory of Machine Tools and Production Engineering, Chair of Machine ToolsRWTH Aachen UniversityAachenGermany

Personalised recommendations