Modeling of Process Machine Interactions in Tool Grinding

  • M. Deichmueller
  • B. Denkena
  • K. M. de Payrebrune
  • M. Kröger
  • S. Wiedemann
  • A. Schröder
  • C. Carstensen
Part of the Lecture Notes in Production Engineering book series (LNPE)

Abstract

A systematic modeling approach to predict and manipulate the static and dynamic process machine interactions in tool grinding is described. The modeling approach is verified by experimental investigations gained by means of an industrial tool grinding machine and separate test stands. It combines models of the static and dynamic behavior of the grinding machine and its components with a microscopic grinding process model. Material removal algorithms are applied to cope with the changing shape and changing mechanical properties of the workpiece during grinding. The interaction model has been applied in the process planning phase to optimize tool paths and process parameters in order to reduce resulting shape errors in ground tools.

Keywords

Tool Path Material Removal Rate Process Force Simulation Time Step Machine Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    European Cutting Tool Association: Zerspanungswerkzeuge: Marktvolumen weltweit, Fertigung Sonderausgabe – Werkzeuge 12, 7 (2010)Google Scholar
  2. 2.
    Aurich, J.C., Biermann, D., Blum, H., Brecher, C., Carstensen, C., Denkena, B., Klocke, F., Kröger, M., Steinmann, P., Weinert, K.: Modelling and Simulation of Process - Machine Interaction in Grinding Production Engineering, vol. 3, pp. 111–120 (2008)Google Scholar
  3. 3.
    de Payrebrune, K., Kröger, M., Deichmueller, M., Denkena, B.: Investigation on the Dynamics of Tool Grinding, Machine Dynamics Problems, vol. 33, pp. 92–104 (2009)Google Scholar
  4. 4.
    Popp, K., Kröger, M., Deichmueller, M., Denkena, B.: Analysis of the Machine Structure and Dynamic Response of a Tool Grinding Machine. In: 1st International Conference on Process Machine Interactions, pp. 299–307 (2008)Google Scholar
  5. 5.
    Popp, K., Kröger, M., Deichmueller, M., Denkena, B.: On Contact Modeling of Workpiece and Grinding Wheel with Nonlinear Elements. In: 7th EUROMECH Solid Mechanics Conference, pp. 281–282 (2009)Google Scholar
  6. 6.
    Chang, H.-C., Wang, J.-J.J.: A stochastic Grinding Force Model considering Random Grit Distribution. International Journal of Machine Tools and Manufacture 48, 1335–1344 (2008)CrossRefGoogle Scholar
  7. 7.
    van Hook, T.: Real-Time Shaded NC Milling Display ACM SIGGRAPH Computer Graphics, vol. 20, pp. 15–20 (1986)Google Scholar
  8. 8.
    Denkena, B., Böß, V.: Technological NC Simulation for Grinding and Cutting Processes Using CutS. In: 12th CIRP Conference on Modelling of Machining Operations, vol. II, pp. 563–566 (2009)Google Scholar
  9. 9.
    Biermann, D., Mohn, T.: A Geometric-Kinematical Approach for the Simulation of Complex Grinding Processes. In: 6th CIRP International Conference on ICME (2008)Google Scholar
  10. 10.
    Denkena, B., Tracht, K., Yu, J.-H.: Advanced NC-Simulation based on the Dexelmodel and the HRMC-Algorithm Production, Engineering, vol. XIII(1), pp. 91–94 (2006)Google Scholar
  11. 11.
    de Payrebrune, K., Kröger, M.: Modal Reduction of Dynamics of Tool Grinding. In: 2nd International Conference on Process Machine Interactions (2010)Google Scholar
  12. 12.
    Denkena, B., Deichmueller, M., Kröger, M., Popp, K.M., Carstensen, C., Schroeder, A., Wiedemann, S.: Geometrical Analysis of the Complex Contact Area for Modeling the local Distribution of Process Forces in Tool Grinding. In: 1st International Conference on Process Machine Interactions, pp. 289–298 (2008)Google Scholar
  13. 13.
    Han, W., Reddy, D.: Plasticity. Springer (1999)Google Scholar
  14. 14.
    Brokate, M., Carstensen, C., Valdman, J.: A Quasi-Static Boundary Value Problem in Multi-Surface Elastoplasticity. I: Analysis, Math. Methods Appl. Sci. 27(14), 1697–1710 (2004)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Schröder, A., Wiedemann, S.: Error Estimates in Elastoplasticity using a Mixed Method, Humboldt Universität zu Berlin, Institute of Mathematics, Preprint 11-01 (2011)Google Scholar
  16. 16.
    Schröder, A.: Mixed Finite Element Methods of Higher-Order for Model Contact Problems. Humboldt Universität zu Berlin, Institute of Mathematics, Preprint 09-16, submitted to SINUM (2009)Google Scholar
  17. 17.
    Schröder, A., Wiedemann, S.: Humboldt Universität zu Berlin, Institute of Mathematics, Preprint 11-02 (2011)Google Scholar
  18. 18.
    Schröder, A.: Constraints coefficients in hp-FEM. Numerical Mathematics and Advanced Applications, 183–190 (2008)Google Scholar
  19. 19.
    Schröder, A.: Constrained approximation in hp-FEM: Unsymmetric subdivisions and multilevel hanging nodes. LNCSE, vol. 1(76), pp. 317–325 (2009)Google Scholar
  20. 20.
    Han, W., Reddy, D.: On the Finite Element Method for Mixed Variational Inequalities arising in Elastoplastiity. SINUM 32(6), 1778–1807 (1995)MathSciNetMATHGoogle Scholar
  21. 21.
    Brokate, M., Carstensen, C., Valdman, J.: A quasi-static Boundary Value Problem in Multi-Surface Elastoplasticity. II: Numerical Solution, Math. Methods Appl. Sci. 28(8), 881–901 (2005)MathSciNetMATHGoogle Scholar
  22. 22.
    Wang, C.Y., Clausen, R.: Marble Cutting with Single Point Cutting Tool and Diamond Segments. Machine Tools & Manufacture 42, 1045–1054 (2002)CrossRefGoogle Scholar
  23. 23.
    Lemaitre, J., Desmorat, R.: Engineering Damage Mechanics. Springer (2005)Google Scholar
  24. 24.
    Deichmueller, M., Denkena, B., de Payrebrune, K.M., Kröger, M., Wiedemann, S., Schroeder, A., Carstensen, C.: Determination of Static and Dynamic Deflections in Tool Grinding using a Dexel-Based Material Removal Simulation. In: 2nd CIRP International Conference on Process Machine Interactions (2010)Google Scholar
  25. 25.
    Tönshoff, H., Peters, J., Inasaki, I., Paul, T.: Modelling and Simulation of Grinding Processes. CIRP Annals - Manufacturing Technology 41, 677–688 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Deichmueller
    • 1
  • B. Denkena
    • 1
  • K. M. de Payrebrune
    • 2
  • M. Kröger
    • 2
  • S. Wiedemann
    • 3
  • A. Schröder
    • 3
  • C. Carstensen
    • 3
  1. 1.Institute of Production Engineering and Machine ToolsLeibniz Universität HannoverHannoverGermany
  2. 2.Institute for Machine Elements, Design and ManufacturingTechnische Universität Bergakademie FreibergFreibergGermany
  3. 3.Department of MathematicsHumboldt University of BerlinBerlinGermany

Personalised recommendations