Simulation of Process Machine Interaction in NC-Shape Grinding

  • D. Biermann
  • H. Blum
  • A. Rademacher
  • A. V. Scheidler
  • K. Weinert
Conference paper
Part of the Lecture Notes in Production Engineering book series (LNPE)

Abstract

The study focuses on the NC-shape grinding process when using toroid grinding wheels and its simulation. First, the experimental investigation with respect to the machine structure and its dynamic behavior, the process forces as well as the temperature distribution in the workpiece and the grinding wheel are discussed. That forms the basis for the modeling and simulation of the NC-shape grinding process. The simulation consists of a geometric-kinematical simulation coupled with a finite element simulation. To validate the simulation, comparisons between the quantities measured and the corresponding calculated values are carried out. Subsequently to this validation the transferability of the simulation to other grinding processes is studied. Furthermore, the simulation is utilized to optimize grinding processes, especially with respect to the NC data.

Keywords

Tool Path Finite Element Simulation Path Planning Workpiece Surface Process Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    DIN EN 8589-11. Schleifen mit rotierendem Werkzeug - Einordnung, Unterteilung, Begriffe. Beuth Verlag (2003)Google Scholar
  2. 2.
    Jansen, T.: Entwicklung einer Simulation für den NC-Formschleifprozess mit Torusschleifscheiben. Dissertation, Technische Universität Dortmund. Vulkan Verlag, Essen (2007)Google Scholar
  3. 3.
    Biermann, D., Blum, H., Jansen, T., Rademacher, A., Scheidler, A., Weinert, K.: Experimental analyses to develop models for NC-shape grinding with a toroid grinding wheel. In: Denkena, B. (ed.) The 1st International Conference on Process Machine Interactions, Hannover, Germany, pp. 279–287, 3.9–4.9 (2008)Google Scholar
  4. 4.
    Brecher, C., Esser, M., Witt, S.: Interaction of manufacturing process and machine tool. CIRP Annals 58(2), 588–607 (2009)CrossRefGoogle Scholar
  5. 5.
    Brinksmeier, E., Aurich, J.C., Govekar, E., Heinzel, C., Hoffmeister, H.-W., Peters, J., Rentsch, R., Stephenson, D.J., Uhlmann, E., Weinert, K., Wittmann, M.: Advances in modelling and simulation of grinding processes. CIRP Annals 55(2), 667–696 (2006)CrossRefGoogle Scholar
  6. 6.
    Klocke, F.: Manufacturing Processes 2: Grinding, Honing, Lapping. Springer, Berlin (2009)Google Scholar
  7. 7.
    Tönshoff, H.K., Peters, J., Inasaki, I., Paul, T.: Modelling and simulation of grinding processes. CIRP Annals 41(2), 677–688 (1992)CrossRefGoogle Scholar
  8. 8.
    Biermann, D., Blum, H., Rademacher, A., Scheidler, A.V.: Simulation of thermal effects in NC-shape grinding of free formed surfaces using toroid grinding wheels. Part I: Experimental results. In: Proceedings of the CIRP 2nd International Conference Process Machine Interactions, Vancouver, BC, Canada, pp. 10.6–11.6 (2010); digital publishedGoogle Scholar
  9. 9.
    Weinert, K., Blum, H., Jansen, T., Rademacher, A.: Simulation based optimization of the NC-shape grinding prozess with toroid grinding wheels. Production Engineering – Research and Development 1(3), 245–252 (2007)CrossRefGoogle Scholar
  10. 10.
    Stautner, M.: Simulation und Optimierung der mehrachsigen Fräsbearbeitung. Technische Universität Dortmund. Vulkan Verlag, Essen (2006)Google Scholar
  11. 11.
    Aurich, J.C., Biermann, D., Blum, H., Brecher, C., Carstensen, C., Denkena, B., Klocke, F., Kröger, M., Steinmann, P., Weinert, K.: Modelling and simulation of process machine interaction in grinding. Production Engineering – Research and Development 3(1), 111–120 (2009)CrossRefGoogle Scholar
  12. 12.
    Biermann, D., Mohn, T.: A geometric-kinematical approach for the simulation of complex grinding processes. In: CIRP International Conference on Intelligent Computation in Manufacturing Engineering, Innovation and Cognitive Production Technology and Systems, Naples, Italy (2008)Google Scholar
  13. 13.
    Weinert, K., Blum, H., Jansen, T., Mohn, T., Rademacher, A.: Angepasste Simulationstechnik zur Analyse NC-gesteuerter Formschleifprozesse. ZWF, Zeitschrift für wirtschaftlichen Fabrikbetrieb 101(7/8), 422–425 (2006)Google Scholar
  14. 14.
    Kienzle, O.: Einfluss der Wärmebehandlung von Stählen auf die Hauptschnittkraft beim Drehen. Stahl und Eisen 74, 530–551 (1954)Google Scholar
  15. 15.
    Biermann, D., Blum, H., Rademacher, A., Scheidler, A.V.: Simulation of thermal effects in NC-shape grinding of free formed surfaces using toroid grinding wheels. Part II: Modeling and FE-discretization. In: Proceedings of the CIRP 2nd International Conference Process Machine Interactions, Vancouver, BC, Canada, pp. 10.6–11.6 (2010); digital publishedGoogle Scholar
  16. 16.
    Blum, H., Kleemann, H., Rademacher, A., Schröder, A.: On solving frictional contact problems part II: Dynamic case. Ergebnisberichte Angewandte Mathematik 377, Technische Universität Dortmund (2008)Google Scholar
  17. 17.
    Blum, H., Jansen, T., Rademacher, A., Weinert, K.: Finite elements in space and time for dynamic contact problems. International Journal for Numerical Methods in Engineering 76, 1632–1644 (2008)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Rademacher, A.: Adaptive Finite Element Methods for Nonlinear Hyperbolic Problems of Second Order. Dissertation Technische Universität Dortmund. Verlag Dr. Hut, München (2009)Google Scholar
  19. 19.
    Blum, H., Kleemann, H., Rademacher, A., Schröder, A., Wiedemann, S.: SOFAR: Scientific object oriented finite element library for application and research. Technical report, Technische Universität Dortmund (2002), http://www.mathematik.uni-dortmund.de/lsx/research/software/sofar/index.html
  20. 20.
    Biermann, D., Blum, H., Rademacher, A., Schäckelhoff, M., Scheidler, A.V., Weinert, K.: Bestimmung der Materialparameter des Spindel-Schleifscheiben-Systems mittels numerischer Parameteridentifikation. Ergebnisberichte Angewandte Mathematik 376T, Technische Universität Dortmund (2008)Google Scholar
  21. 21.
    Biermann, D., Blum, H., Jansen, T., Rademacher, A., Scheidler, A.V., Schröder, A., Weinert, K.: Space adaptive finite element methods for dynamic Signorini problems in the simulation of the NC-shape grinding process. In: Denkena, B. (ed.) 1st International Conference on Process Machine Interactions, Hannover, Germany, pp. 309–316, 3.9.–4.9 (2008)Google Scholar
  22. 22.
    Blum, H., Rademacher, A., Schröder, A.: Space adaptive finite element methods for dynamic Signorini problems. Electronic Transactions on Numerical Analysis 32, 162–172 (2008)MathSciNetMATHGoogle Scholar
  23. 23.
    Blum, H., Rademacher, A., Schröder, A.: Space adaptive finite element methods for dynamic Signorini problems. Computational Mechanics 44(4), 481–491 (2009)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Rademacher, A., Schröder, A.: Goal-oriented error control in adaptive mixed FEM for Signorini’s problem. Computer Methods in Applied Mechanics and Engineering 200(1-4), 345–355 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • D. Biermann
    • 1
  • H. Blum
    • 2
  • A. Rademacher
    • 2
  • A. V. Scheidler
    • 1
  • K. Weinert
    • 1
  1. 1.Faculty of Mechanical Engineering, Institute of Machining TechnologyTechnische Universität DortmundDortmundGermany
  2. 2.Faculty of Mathematics (LS X)Technische Universität DortmundDortmundGermany

Personalised recommendations