Process Machine Interaction in Pendulum and Speed-Stroke Grinding

  • M. Weiß
  • F. Klocke
  • H. Wegner
Conference paper
Part of the Lecture Notes in Production Engineering book series (LNPE)

Abstract

The complex interaction of process forces and machine structure affects the quality of ground workpieces, especially in highly-productive machining processes, if machines are operated at their limits. In speed-stroke grinding, the highly-dynamic process forces are caused by high workpiece velocities and high acceleration of the machine table. These forces are influenced by the process parameters, the material properties, the coolant application and the grinding tool specification. The paper describes the approach to simulate the process machine interaction in speed-stroke grinding by a coupled model. The machine is modeled by a multi-body simulation, which can depict the static and dynamic behavior of the machine for every working position. This machine model is coupled with an analytical-empirical force model, which predicts the process forces regarding the process parameters, the coolant application and the workpiece material. The machine control system is implemented in the model as well. The ability to model a speed stroke grinding process, including the machine, the control system and the process itself can be used to predict and improve the workpiece quality regarding the measurement accuracy minimizing time and cost intensive experiments.

Keywords

Workpiece Material Process Force Tool Centre Point Machine Structure Coolant Flow Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Duscha, M., Klocke, F., D’Enremont, A., Linke, B., Wegner, H.: Investigation of Temperatures and residual stresses in speed-stroke grinding via Fea Simulation and practical tests. In: Proceedings in Manufacturing Systems, vol. 5(3), pp. 143–148 (2010)Google Scholar
  2. 2.
    Zeppenfeld, C.: Schnellhubschleifen von gamma-Titanaluminiden. Gamma-Titanaluminiden. RWTH Aachen University, Aachen (2005)Google Scholar
  3. 3.
    Nachmani, Z.: Randzonenbeeinflussung beim Schnellhubschleifen. Dissertation, RWTH Aachen University, Aachen (2008)Google Scholar
  4. 4.
    Uhlmann, E., Sammler, C.: Schnellhubschleifen von Hochleistungswerkstoffen. Jahrbuch Schleifen, Honen, Läppen und Polieren, vol. 64, pp. 155–168. Vulkan-Verlag, Essen (2010)Google Scholar
  5. 5.
    Weck, M.: Dynamisches Maschinenverhalten bei der Zerspanung mit undefinierter Schneide. Werkzeugmaschinen 5 – Messtechnische Untersuchung und Beurteilung, pp. 326–362. Springer, Berlin (2001)Google Scholar
  6. 6.
    Beck, T.: Kühlschmierstoffeinsatz beim Schleifen mit CBN. Dissertation, RWTH Aachen University, Aachen (2002)Google Scholar
  7. 7.
    Wittmann, M.: Bedarfsgerechte Kühlschmierung beim Schleifen. Dissertation, University of Bremen, Bremen (2007)Google Scholar
  8. 8.
    Brinksmeier, E., Heinzel, C., Wittmann, M.: Friction, Cooling and Lubrication in Grinding. Annals of the CIRP, Keynote Paper 48(2), 581–598 (1999)Google Scholar
  9. 9.
    Marksoud, T.M.A., Mokbel, A.: Suppression of chatter in grinding using high-viscosity coolants. Proceedings of the Institution of Mecanical Engineers, Part B (Journal of Engineering Manufacture) 216, 113–123 (2002)CrossRefGoogle Scholar
  10. 10.
    Heinzel, C.: Methoden zur Untersuchung und Optimierung der Kühlschmierung beim Schleifen. Dissertation, University of Bremen, Bremen (1999)Google Scholar
  11. 11.
    Klocke, F.: Process Design. Manufacturing Processes 2 – Grinding, Honing, Lapping, pp. 251–287. Springer, Berlin (2009)Google Scholar
  12. 12.
    Esser, M., Brecher, C., Witt, S.: Interaction of manufacturing process and machine tool. Annals of the CIRP, Keynote Paper 58, 588–607 (2009)Google Scholar
  13. 13.
    Hoffmann, F.: Optimierung der dynamsichen Bahngenauigkeit von Werkzeugmaschinen mit der Mehrkörpersimulation. Dissertation, RWTH Aachern University, Aachen (2008)Google Scholar
  14. 14.
    Klocke, F., Brecher, C., Sitte, B., Weiß, M.: Analyse der dynamischen Wechselwirkungen bei Pendel- und Schnellhubschleifprozessen. Jahrbuch Schleifen, Honen, Läppen und Polieren 64, 53–65 (2010)Google Scholar
  15. 15.
    Tönshoff, H.K., Peters, J., Inasaki, I., Paul, T.: Modelling and Simulation of Grinding Processes. Annals of the CIRP, Keynote Paper 41(2), 677–688 (1992)Google Scholar
  16. 16.
    Brinksmeier, E., et al.: Advances in Modeling and Simulation of Grinding Processes. Annals of the CIRP, Keynote Paper 55(2), 667–696 (2006)CrossRefGoogle Scholar
  17. 17.
    Aurich, J.C., Biermann, D., Blum, H., Brecher, C., Carstensen, C., Denkena, B., Klocke, F., Kröger, M., Steinmann, P., Weinert, K.: Modelling and simulation of process: machine interaction in grinding. In: Production Engineering – Research and Development, vol. 3(1), pp. 111–120. Springer, Heidelberg (2009)Google Scholar
  18. 18.
    Weiß, M., Klocke, F., Wegner, H.: Influence of coolant and workpiece material properties on dynamic grinding forces in speed stroke grinding. In: Proceedings of the 2nd International Conference on Process Machine Interaction, Vancouver, G4 (2010)Google Scholar
  19. 19.
    Klocke, F., Duscha, M., Hoffmann, F., Wegner, H., Zeppenfeld, C.: Machine – Grinding Wheel –Workpiece Interaction in Speed-Stroke Grinding. In: Proceedings of the 1st International Conference on Process Machine Interaction, Hannover, pp. 259–266 (2008)Google Scholar
  20. 20.
    Wittmann, M., Heinzel, C., Brinksmeier, E.: Evaluating the Efficiency of Coolant Supply Systems in Grinding. In: Production Engineering – Research and Development, Braunschweig, vol. XI(2), pp. 39–42 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Weiß
    • 1
  • F. Klocke
    • 1
  • H. Wegner
    • 1
  1. 1.Laboratory for Machine Tools and Production EngineeringRWTH Aachen UniversityAachenGermany

Personalised recommendations