High-Performance Surface Grinding

  • J. C. Aurich
  • A. Bouabid
  • P. Steinmann
  • B. Kirsch
Conference paper
Part of the Lecture Notes in Production Engineering book series (LNPE)

Abstract

This chapter presents experimental as well as modelling and simulation approaches to investigate a high-performance surface grinding process. The complex material removal mechanisms generate transient cutting forces that cover a wide range of excitation frequencies. The generated cutting forces impact the grinding machine and lead to deformations, which depend on the machine’s mechanical properties. In general, these deformations have an influence on the cutting forces. Deformations lead to a change of the depth of cut and, therefore, the cutting forces change. Thus, there are three aspects of great importance: the process, the machine and the process machine interaction. Advances in investigating the process are covered first. Afterwards, a new approach to model the machine, its deformation behavior and the way the machine interacts with the process will be described.

Keywords

Feed Rate Material Removal Rate Chip Thickness Force Signal Cubic Boron Nitride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brinksmeier, E., Aurich, J.C., Govekar, E., Heinzel, C., Hofmeister, H.-W., Klocke, F., Peters, J., Rentsch, R., Stephenson, D.J., Uhlmann, E., Weinert, K., Wittmann, M.: Advances in Modelling and Simulation of Grinding Processes. CIRP Annals - Manufacturing Technology 55(2), 667–696 (2006)Google Scholar
  2. 2.
    Aurich, J.C., Biermann, D., Blum, H., Brecher, C., Carstensen, C., Denkena, B., Klocke, F., Kröger, M., Steinmann, P., Weinert, K.: Modelling and Simulation of Process - Machine Interaction in Grinding. Production Engineering 3(1), 111–120 (2008)CrossRefGoogle Scholar
  3. 3.
    Herzenstiel, P., Bouabid, A., Steinmann, P., Aurich, J.C: Experimental Investigation and Computational Simulation of Process-Machine Interactions during High-Performance Surface Grinding. In: Proceedings of 1st International Conference on Process-Machine Interaction, PZH Hannover, pp. 267–278 (2008)Google Scholar
  4. 4.
    Warnecke, G., Zitt, U.: Kinematic Simulation for Analyzing and Predicting High-Performance Grinding Processes. CIRP Annals – Manufacturing Technology 47(1), 265–270 (1998)Google Scholar
  5. 5.
    Zitt, U.: Modellierung und Simulation von Hochleistungsschleifprozessen. Dissertation, TU Kaiserslautern (1999)Google Scholar
  6. 6.
    Braun, O.: Konzept zur Gestaltung und Anwendung definiert gesetzter Hochleistungsschleifscheiben. Dissertation, TU Kaiserslautern (2008)Google Scholar
  7. 7.
    Aurich, J.C., Herzenstiel, P., Sudermann, H., Magg, T.: High-performance dry grinding using a grinding wheel with a defined grain pattern. CIRP Annals – Manufacturing Technology 57(1), 357–362 (2008)Google Scholar
  8. 8.
    Herzenstiel, P., Aurich, J.C.: Numerical and Experimental Investigations of a Grinding Wheel with a Defined Grain Pattern. In: CIRP Conference on Modeling of Machining Operations, vol. 12, pp. 567–574 (2009)Google Scholar
  9. 9.
    Aurich, J.C., Herzenstiel, P., Kirsch, B., Steffes, M.: Experimental and Numerical Studies of a Surface Grinding Process. In: Proceedings of the 2nd International Conference on Process Machine Interaction (PMI) Session G1 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. C. Aurich
    • 1
  • A. Bouabid
    • 2
  • P. Steinmann
    • 2
  • B. Kirsch
    • 3
  1. 1.Institute for Applied MathematicsLeibniz Universität HannoverHannoverGermany
  2. 2.Chair of Applied MechanicsUniversität Erlangen-NürnbergBavariaGermany
  3. 3.Institute for Manufacturing Technology and Production SystemsUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations