Skip to main content

Adaptive Finite Elements and Mathematical Optimization Methods

  • Conference paper
  • 3390 Accesses

Part of the Lecture Notes in Production Engineering book series (LNPE)

Abstract

This chapter focuses on the topics of mathematical research in the priority program and on the application of the results to engineering problems. First, a posteriori estimates and adaptive methods based on them are presented for contact problems. In detail, frictional contact problems using a linear elastic material law, which are discretized by a dual-dual method, are considered. Using a different approach, adaptive methods are derived for elasto-plasticity with contact and friction. Then results for contact problems involving inertial effects are introduced. Second, parameter identification and inverse problems are considered. After an introduction into the general problem of setting and solution techniques, the balancing of a rotating system is discussed as a prototypical industrial application.

Keywords

  • Variational Inequality
  • Contact Problem
  • Posteriori Error
  • Adaptive Method
  • Posteriori Error Estimate

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-32448-2_3
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-32448-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. John Wiley & Sons, New York (2000)

    MATH  CrossRef  Google Scholar 

  2. Andres, M.: Dual-dual formulations formulations for frictional contact problems in mechanics. Ph.D. thesis, Institute of Applied Mathematics, Leibniz Universität Hannover (2011)

    Google Scholar 

  3. Arnold, D.N., Brezzi, F., Douglas Jr., J.: PEERS: a new mixed finite element for plane elasticity. Japan J. Appl. Math. 1(2), 347–367 (1984), http://dx.doi.org/10.1007/BF03167064 , doi:10.1007/BF03167064

    MathSciNet  MATH  CrossRef  Google Scholar 

  4. Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations. Birkhäuser, Basel (2003)

    MATH  Google Scholar 

  5. Biermann, D., Blum, H., Jansen, T., Rademacher, A., Scheidler, A.V., Schröder, A., Weinert, K.: Space adaptive finite element methods for dynamic Signorini problems in the simulation of the NC-shape grinding process. In: Proceedings of the 1st CIRP International Conference on Process Machine Interactions (PMI), pp. 309–316 (2008)

    Google Scholar 

  6. Blum, H., Jansen, T., Rademacher, A., Weinert, K.: Finite elements in space and time for dynamic contact problems. Int. J. Numer. Meth. Engng. 76, 1632–1644 (2008)

    MathSciNet  MATH  CrossRef  Google Scholar 

  7. Blum, H., Rademacher, A., Schröder, A.: Space adaptive finite element methods for dynamic obstacle problems. ETNA, Electron. Trans. Numer. Anal. 32, 162–172 (2008)

    MATH  Google Scholar 

  8. Blum, H., Rademacher, A., Schröder, A.: Space adaptive finite element methods for dynamic signorini problems. Comput. Mech. 44(4), 481–491 (2009)

    MathSciNet  MATH  CrossRef  Google Scholar 

  9. Bostan, V., Han, W., Reddy, B.D.: A posteriori error estimation and adaptive solution of elliptic variational inequalities of the second kind. Appl. Numer. Math. 52(1), 13–38 (2005), doi:10.1016/j.apnum.2004.06.012

    MathSciNet  MATH  CrossRef  Google Scholar 

  10. Braack, M., Ern, A.: A posteriori control of modeling errors and discretisation errors. Multiscale Model. Simul. 1(2), 221–238 (2003)

    MathSciNet  MATH  CrossRef  Google Scholar 

  11. Brandt, C., Krause, A., Brinksmeier, E., Maaß, P.: Force modelling in diamond machining with regard to the surface generation process. In: Proceedings of the 9th International Conference and Exhibition on Laser Metrology, Machine Tool, CMM and Robotic Performance, LAMDAMAP 2009, London, June 30-July 2, pp. 377–386 (2009)

    Google Scholar 

  12. Brandt, C., Niebsch, J., Ramlau, R., Maass, P.: Modeling the influence of unbalances for ultra-precision cutting processes. Zeitschrift für Angewandte Mathematik und Mechanik (2011) (in press)

    Google Scholar 

  13. Carstensen, C.: Numerical analysis of the primal problem of elastoplasticity with hardening. Numer. Math. 82(4), 577–597 (1999), doi:10.1007/s002110050431

    MathSciNet  MATH  CrossRef  Google Scholar 

  14. Carstensen, C., Dolzmann, G.: A posteriori error estimates for mixed FEM in elasticity. Numer. Math. 81(2), 187–209 (1998), http://dx.doi.org/10.1007/s002110050389 , doi:10.1007/s002110050389

    MathSciNet  MATH  CrossRef  Google Scholar 

  15. Carstensen, C., Klose, R., Orlando, A.: Reliable and efficient equilibrated a posteriori error finite element error control in elastoplasticity and elastoviscoplasticity with hardening. Comput. Methods Appl. Mech. Engrg. 195(19-22), 2574–2598 (2006)

    MathSciNet  MATH  CrossRef  Google Scholar 

  16. Carstensen, C., Valdman, J., Brokate, M.: A quasi-static boundary value problem in multi-surface elastoplasticity: part 1 - analysis. Math. Methods Appl. Sci. 27, 1697–1710 (2004)

    MathSciNet  MATH  CrossRef  Google Scholar 

  17. Carstensen, C., Valdman, J., Brokate, M.: A quasi-static boundary value problem in multi-surface elastoplasticity: part 2 - numerical solution. Math. Methods Appl. Sci. 28, 881–901 (2005)

    MathSciNet  MATH  CrossRef  Google Scholar 

  18. Czekanski, A., El-Abbasi, N., Meguid, S.A., Refaat, M.H.: On the elastodynamic solution of frictional contact problems using variational inequalities. Int. J. Numer. Meth. Engng. 50, 611–627 (2001)

    MATH  CrossRef  Google Scholar 

  19. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications in Pure and Applied Mathematics 57(11), 1413–1457 (2004)

    MATH  CrossRef  Google Scholar 

  20. Ekeland, I., Témam, R.: Convex analysis and variational problems. Classics in Applied Mathematics, vol. 28, english edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1999); Translated from the French

    Google Scholar 

  21. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Mathematics and its Applications, vol. 375. Kluwer Academic Publishers Group, Dordrecht (2000)

    Google Scholar 

  22. Glowinski, R., Lions, J.-L., Trémolières, R.: Numerical analysis of variational inequalities. Studies in Mathematics and its Applications, vol. 8. North-Holland Publishing Co., Amsterdam (1981); Translated from the French

    Google Scholar 

  23. Han, W.: Finite element analysis of a holonomic elastic-plastic problem. Numer. Math. 60(4), 493–508 (1992), doi:10.1007/BF01385733

    MathSciNet  MATH  Google Scholar 

  24. Han, W., Reddy, D.: Plasticity. Springer (1999)

    Google Scholar 

  25. Hlaváček, I., Haslinger, J., Nečas, J., Lovíšek, J.: Solution of variational inequalities in mechanics. Applied Mathematical Sciences, vol. 66. Springer, New York (1988); Translated from the Slovak by J. Jarník

    Google Scholar 

  26. Ito, K., Kunisch, K.: Lagrange multiplier approach to variational problems and applications. Advances in Design and Control, vol. 15. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2008)

    CrossRef  Google Scholar 

  27. Laursen, T.A.: Computational Contact and Impact Mechanics. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  28. Niebsch, J., Ramlau, R., Brandt, C.: On the interaction of unbalances and surface quality in ultra-precision cutting machinery. In: SIRM 2011, Darmstadt, Germany (2011)

    Google Scholar 

  29. Rademacher, A.: Adaptive finite element methods for nonlinear hyperbolic problems of second order. Ph.D. thesis, Technische Universität Dortmund, Published in Verlag Dr. Hut, München (2009)

    Google Scholar 

  30. Ramlau, R.: Morozov’s discrepancy principle for tikhonov regularization of nonlinear operators. Numer. Funct. Anal. and Optimization 23, 147–172 (2002)

    MathSciNet  MATH  CrossRef  Google Scholar 

  31. Ramlau, R.: A steepest descent algorithm for the global minimization of the tikhonov-functional. Inverse Problems 18(2), 381–405 (2002), http://stacks.iop.org/0266-5611/19/i=2/a=312

    MathSciNet  MATH  CrossRef  Google Scholar 

  32. Ramlau, R.: Tigra - an iterative algorithm for regularizing nonlinear ill-posed problems. Inverse Problems 19(2), 433–467 (2003), http://stacks.iop.org/0266-5611/19/i=2/a=312

    MathSciNet  MATH  CrossRef  Google Scholar 

  33. Rannacher, R., Suttmeier, F.-T.: A posteriori error estimation and mesh adaptation for finite element models in elasto-plasticity. Comput. Methods Appl. Mech. Eng. 176(1-4), 333–361 (1999)

    MathSciNet  MATH  CrossRef  Google Scholar 

  34. Richter, T.: Parral multigrid method for adaptive finite elements with application to 3d flow problems. Ph.D. thesis, Ruprecht-Karls-Universität Heidelberg (2005)

    Google Scholar 

  35. Scherzer, O.: The use of Morozov’s discrepancy priciple for Tikhonov regularization for solving nonlinear ill-posed problems. Computing 51, 45–60 (1993)

    MathSciNet  MATH  CrossRef  Google Scholar 

  36. Schröder, A.: A posteriori Error Estimation in Mixed Finite Element Methods for Signorini’s Problem. In: Numerical Mathematics and Advanced Applications. Proceedings of ENUMATH 2009, pp. 801–808 (2010)

    Google Scholar 

  37. Schröder, A.: Fehlerkontrollierte adaptive h- und hp-Finite-Elemente-Methoden für Kontaktprobleme mit Anwendungen in der Fertigungstechnik. Ph.D. thesis, Universität Dortmund (2005)

    Google Scholar 

  38. Schröder, A.: Mixed Finite Element Methods of Higher-Order for Model Contact Problems (2009); Humboldt Universitt zu Berlin, Institute of Mathematics, Preprint 09-16

    Google Scholar 

  39. Schröder, A., Rademacher, A.: Goal-oriented error control in adaptive mixed FEM for Signorinis problem. Computer Methods in Applied Mechanics and Engineering 200(1-4), 345–355 (2011)

    MathSciNet  CrossRef  Google Scholar 

  40. Schröder, A., Wiedemann, S.: Erro restimates in elastoplasticity using a mixed method. Applied Numerical Mathematics 61, 1031–1045 (2011)

    MathSciNet  MATH  CrossRef  Google Scholar 

  41. Sokolnikoff, I.S.: Mathematical theory of elasticity, 2nd edn. McGraw-Hill Book Company, Inc., New York (1956)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Andres, M. et al. (2013). Adaptive Finite Elements and Mathematical Optimization Methods. In: Denkena, B., Hollmann, F. (eds) Process Machine Interactions. Lecture Notes in Production Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32448-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32448-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32447-5

  • Online ISBN: 978-3-642-32448-2

  • eBook Packages: EngineeringEngineering (R0)