Investigation of the Complex Interactions during Impulse Forming of Tubular Parts

  • Fr. -W. Bach
  • M. Kleiner
  • A. E. Tekkaya
Conference paper
Part of the Lecture Notes in Production Engineering book series (LNPE)


The expansion of tubes by direct application of gas detonation waves or electromagnetic forming (EMF) is an alternative forming method for hollow section workpieces. In particular, the process can be used for typical hydro-formed parts, car body or exhaust elements in the automotive industry, for example. The introduced processes belong to the category of high speed forming methods and provide typical advantages, such as higher achievable strains, compared to quasistatic methods using high water pressure. Another advantage of these processes is the avoidance of high contact forces by employing an “inertia-locked tool” system due to the extremely short process time. To develop a controllable process it is essential to gain a good knowledge of the interactions in the system. This can be achieved by using simulations in combination with experimental investigations; their results are the topic of this paper. Also included are special investigations of the material behavior at high strain rates.


High Strain Rate Impact Velocity Detonation Wave Initial Pressure Impact Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lesemann, M., Sahr, C., Hart, S., Taylor, R.: SuperLIGHT-CAR – the Multi-Material Car Body. In: Proceedings of the 7th LS-DYNA Anwenderforum, Bamberg (2008)Google Scholar
  2. 2.
    Kleiner, M., Geiger, M., Klaus, A.: Manufacturing of Lightweight Components by Metal Forming. In: Annals of the CIRP Manufacturing Technology, 53rd General Assembly of CIRP, vol. 52(2), pp. 521–542 (2003)Google Scholar
  3. 3.
    Psyk, V., Risch, D., Kinsey, B.L., Tekkaya, A.E., Kleiner, M.: Electromagnetic forming – A review. J. Mater. Process. Tech (2011), doi: 10.1016/j.jmatproctec.2010.12.012Google Scholar
  4. 4.
    Beerwald, C.: Grundlagen der Prozessauslegung und –gestaltung bei der elektromagnetischen Umformung. Dr. Ing. Dissertation, TU Dortmund (2005)Google Scholar
  5. 5.
    Kaden, H.: Wirbelströme und Schirmung in der Nachrichtentechnik. Springer, Berlin (1959)Google Scholar
  6. 6.
    Weber, M., Hermes, M., Brosius, A., Beerwald, C., Gersthteyn, G., Olivier, H., Kleiner, M., Bach, F.-W.: Process Investigation of Tube Expansion by Gas Detonation. In: Proceedings of the International Conference on High Speed Forming (ICHSF) 2006, pp. 161–174 (2006) ISBN 3-00-018432-5Google Scholar
  7. 7.
    Esser, B.: Die Zustandsgrößen im Stoßwellenkanal als Ergebnisse eines exakten Riemannlösers. Dissertation, RWTH Aachen (1991)Google Scholar
  8. 8.
    Bathe, K.J.: Finite Elemente Methoden, 2nd edn. Springer, Berlin (2002)CrossRefGoogle Scholar
  9. 9.
    Psyk, V., Beerwald, C., Homberg, W., Kleiner, M.: Extension of Forming Limits by Using a Process Combination of Electromagnetic Forming and Hydroforming. In: Proceedings of the 8th International Conference on Technology of Plasticity, ICTP (2005) ISBN 88-87331-74-XGoogle Scholar
  10. 10.
    Psyk, V.: Prozesskette Krümmen – Elektromagnetisch Komprimieren – Innenhochdruckumformen für Rohre und profilförmige Bauteile. Dr. Ing. Dissertation, TU Dortmund (2010) ISBN 978-3-8322-9026-9Google Scholar
  11. 11.
    Gottstein, G., Shvindlerman, L.S.: Grain boundary migration in metals: thermodynamics, kinetics, applications, vol. 385. CRC Press, Boca Raton (1999)Google Scholar
  12. 12.
    Johnston, W.G., Gilman, J.J.: Dislocation Velocities, Dislocation Densities and Plastic Flow in Lithium Fluoride Crystals. Journal of Applied Physics 30(2), 129 (1959)CrossRefGoogle Scholar
  13. 13.
    Gottstein, G.: Physik. Grundlagen der Materialkunde. Springer, Berlin (2001)Google Scholar
  14. 14.
    Roos, A.: Fast-moving dislocations in high strain rate deformation. Groningen University Press (1999)Google Scholar
  15. 15.
    Alshitz, V.I., Indenbom, V.L.: Dynamic dragging of dislocations. Soviet Physics Uspekhi 18(1) (1975)Google Scholar
  16. 16.
    Mattissen, D.: Insitu Untersuchung des Einflusses der Tripelpunkte auf die Korngrenzenbewegung in Aluminium, Dissertation, RWTH Aachen (2004)Google Scholar
  17. 17.
    Czubayko, M.: Korngrenzenbewegung in Aluminium und Zink, Dissertation, RWTH Aachen (1998)Google Scholar
  18. 18.
    Vovk, V.T.: Gasexplosion als Werkzeug in der Fertigungstechnik. Habilitation, Magdeburg, Univ. (1999)Google Scholar
  19. 19.
    Psyk, V., Gershteyn, G., Demir, O.K., Brosius, A., Tekkaya, A.E., Schaper, M., Bach, F.-W.: Process Analysis and Physical Simulation of Electromagnetic Joining of Thin-Walled Parts. In: Proceedings of the International Conference on High Speed Forming, pp. 181–190 (2008) ISBN: 3-9809535-3-XGoogle Scholar
  20. 20.
    Kreimeyer, M., Wagner, F., Zerner, I., Sepold, G.: Laser beam joining of aluminium with titanium with the use of an adapted working head. In: DVS-Berichte, vol. 212, pp. 317–321. DVS-Verlag, Düsseldorf (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fr. -W. Bach
    • 1
  • M. Kleiner
    • 2
  • A. E. Tekkaya
    • 2
  1. 1.Institute of Material ScienceLeibniz Universität HannoverHanoverGermany
  2. 2.Institute of Forming Technology and Lightweight ConstructionTechnische Universität DortmundDortmundGermany

Personalised recommendations