Increase of the Dimensional Accuracy of Sheet Metal Parts Utilizing a Model-Based Path Planning for Robot-Based Incremental Forming

  • H. Meier
  • S. Reese
  • Y. Kiliclar
  • R. Laurischkat
Part of the Lecture Notes in Production Engineering book series (LNPE)


The principle of robot-based incremental sheet metal forming is based on flexible shaping by means of a freely programmable path-synchronous movement of two tools, which are operated by two industrial robots. The final shape is produced by the incremental infeed of the forming tool in depth direction and its movement along the geometry’s contour in lateral direction. The main problem during the forming process is the influence on the dimensional accuracy resulting from the compliance of the involved machine structures and the spring-back effects of the workpiece. The project aims to predict these deviations caused by compliances and carry out a compensative path planning based on this prediction. Finite element analysis using a material model developed at the Institute of Applied Mechanics (IFAM) [1] has been used for the simulation of the forming process.


Sheet Metal Tool Path Dimensional Accuracy Kinematic Hardening Sheet Metal Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vladimirov, I.N., Pietryga, M.P., Reese, S.: On the modelling of nonlinear-kinematic hardening at finite strains with application to springback – comparison of time integration algorithms. International Journal for Numerical Methods in Engineering 75, 1–28 (2008)zbMATHCrossRefGoogle Scholar
  2. 2.
    Douflou, J., Szekeres, A., Vanherck, P.: Force Measurements for Single Point Incremental Forming: A Experimental Study. In: Proceedings of the 11th Int. Conference on Sheet Metal, pp. 441–448 (2005)Google Scholar
  3. 3.
    Jeswiet, J., Micari, F., Hirt, G., Bramley, A., Douflou, J., Allwood, J.: Asymmetric Single Point Forming of Sheet Metal. In: Proceedings of the 55th CIRP General Assembly in Antalya, pp. 88–114 (2005) (in Antalya)Google Scholar
  4. 4.
    Meier, H., Smukala, V., Dewald, O., Zhang, J.: Two Point Incremental Forming with Two Moving Forming Tools. In: Proceedings of the 12th International Conference on Sheet Metal, pp. 599–605 (2007)Google Scholar
  5. 5.
    Meier, H., Laurischkat, R., Zhu, J.: A Model Based Approach to Increase the Part Accuracy in Robot based Incremental Sheet Metal Forming. In: AIP Conference Proceedings, vol. 1315, pp. 1407–1412 (2010)Google Scholar
  6. 6.
    Vladimirov, I.N.: Anisotropic material modelling with application to sheet metal forming RWTH Aachen, Institut für Angewandte Mechanik, Technische Universität Braunschweig, Dissertation (2009)Google Scholar
  7. 7.
    Choi, Y., Han, C.S., Lee, J.K., Wagoner, R.: Modeling multi-axial deformation of planar anisotropic elasto-plastic materials. part I: Theory, International Journal of Plasticity 22, 1745–1764 (2006)zbMATHGoogle Scholar
  8. 8.
    Dettmer, W., Reese, S.: On the theoretical and numerical modelling ofArmstrong-Frederick kinematic hardening in the finite strain regime. Computer Methods in Applied Mechanics and Engineering 193, 87–116 (2004)zbMATHCrossRefGoogle Scholar
  9. 9.
    Hakansson, P., Wallin, M., Ristinmaa, M.: Comparison of isotropic hardening and kinematic hardening in thermoplasticity. International Journal of Plasticity 21, 1435–1460 (2005)zbMATHCrossRefGoogle Scholar
  10. 10.
    Menzel, A., Ekh, M., Runesson, K., Steinmann, P.: A framework for multiplicative elastoplasticity with kinematic hardering coupled to anisotropic damage. International Journal of Plasticity 21, 397–434 (2005)zbMATHCrossRefGoogle Scholar
  11. 11.
    Svendsen, B., Levkovitch, V., Wang, J., Reusch, F., Reese, S.: Application of the concept of evolving structure tensors to the modeling of initial and induced anisotropy at large deformation. Computers & Structures 84, 1077–1085 (2006)CrossRefGoogle Scholar
  12. 12.
    Wallin, M., Ristinmaa, M.: Deformation gradient based kinematic hardening model. International Journal of Plasticity 21, 2025–2050 (2005)zbMATHCrossRefGoogle Scholar
  13. 13.
    Armstrong, F., PJ, CO: A mathematical representation of the multiaxial Bauschinger effect, C.E.G.B. Report RD/B/N731, Berkeley Nuclear Laboratories, Berkeley, U.K (1966)Google Scholar
  14. 14.
    Schwarze, M., Reese, S.: A reduced integration solid-shell finite element based on the EAS and the ANS concept – geometrically linear problems. International Journal for Numerical Methods in Engineering 80, 1322–1355 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Hartenberg, R.S., Denavit, J.: A kinematic notation for lower pair mechanisms based on matrices. Journal of Applied Mechanics 77, 215–221 (1955)MathSciNetGoogle Scholar
  16. 16.
    Corke, P.I.: A Robotics Toolbox for MATLAB. IEEE Robotics and Automation Magazine 3(1), 24–32 (1996)CrossRefGoogle Scholar
  17. 17.
    Gerstmann, U.: Robotergenauigkeit: Der Getriebeeinfluss auf die Arbeits- und Positionsgenauigkeit, Dissertation, Universität Hannover (1997)Google Scholar
  18. 18.
    Pham, M.T., Gautier, M., Poignet, P.: Identification of Joint Stiffness with Bandpass Filtering. In: Proceedings of the IEEE Int. Conf. on Robotics & Automation, pp. 2867–2872 (2001)Google Scholar
  19. 19.
    Beyer, L.: Genauigkeitssteigerung von Industrierobotern, Dissertation, Universität der Bundeswehr Hamburg (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • H. Meier
    • 1
  • S. Reese
    • 2
  • Y. Kiliclar
    • 2
  • R. Laurischkat
    • 1
  1. 1.Chair of Production SystemsRuhr-University BochumBochumGermany
  2. 2.Institute of Applied MechanicsRWTH Aachen UniversityAachenGermany

Personalised recommendations