Interaction Effects between Strip and Work Roll during Flat Rolling Process

  • S. Puchhala
  • M. Franzke
  • G. Hirt
Part of the Lecture Notes in Production Engineering book series (LNPE)


During the flat rolling process (cold or hot), the strip flatness and thickness profile are highly influenced by the interaction effects between strip and work rolls. To understand and analyze these effects a new modeling concept was developed. Within this concept, the tool simulations are separated from the process simulation. With the help of an automatic coupling module, the influences of the tool effects are realized within the process simulation. With this modeling concept, three types of interaction phenomena are studied and validated using experiments: elastic roll effects during the cold rolling process, work roll thermal effects during the hot rolling process and tribological effects (abrasive wear) on the process simulation. It was also shown that, compared to the single FE model, this modeling concept is relatively faster and suitable for large 3D models without losing the quality of the predicted results.


Rolling Process Work Roll Wear Model Contact Pressure Distribution Cold Rolling Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kainz, A., Krimplelstätter, K., Zemen, K.: FE Simulation of thin strip and temper rolling processes. In: ABAQUS Austria User Conference (2003)Google Scholar
  2. 2.
    Kim, T.H., Lee, W.H.: An integrated FE process model for the prediction of strip profile in flat rolling. ISIJ 43, 1947–1956 (2003)CrossRefGoogle Scholar
  3. 3.
    Ohe, K., Kajiura, S., Simada, S., Mizuta, A., Morimoto, Y., Fujino, T., Anraku, K.: Development of shape control in plate rolling. In: METEC Conference proceedings, vol. 2, pp. 78–85 (1994)Google Scholar
  4. 4.
    Buessler, P., Montmitonnent, P.: A review on theoretical analysis of rolling in Europe. ISIJ 31, 525–538 (1991)CrossRefGoogle Scholar
  5. 5.
    Guo, R.-M.: Development, verification and application of an optimal crown shape control model for rolling mills with multiple control devices. In: AISE Conference (1995)Google Scholar
  6. 6.
    Tseng, A.A.: A numerical heat transfer analysis of strip rolling. ASME 106, 512–517 (1984)CrossRefGoogle Scholar
  7. 7.
    Hsu, C.T., Evans, R.W.: Finite element analysis on the hot rolling of steel. Adv. Tech. Plasticity 2, 587–593 (1990)Google Scholar
  8. 8.
    Sun, C.G., Hwang, S.M.: Prediction of roll thermal profile in hot strip rolling by the Finite element method. ISIJ 40, 794–801 (2000)CrossRefGoogle Scholar
  9. 9.
    Sun, C.G., Hwang, S.M., Ryoo, S.R., Kwak, W.J.: An integrated FE process model for precision analysis of thermo-mechanical behaviour of the rolls and strip in hot strip rolling. Comp. Methods. Appl. Mech. Engg. 191, 4015–4033 (2002)zbMATHCrossRefGoogle Scholar
  10. 10.
    Lee, J.H., Hwang, S.M., Park, H.D.: FE-based on-line model for the prediction of roll force and roll power in hot strip rolling. ISIJ 40, 1013–1018 (2000)CrossRefGoogle Scholar
  11. 11.
    Jiang, Z.Y., Tieu, A.K.: Contact mechanics and work roll wear in cold rolling of thin strip. Wear Journal 263, 1447–1453 (2007)CrossRefGoogle Scholar
  12. 12.
    Magne, A., Gaspard, C., Gabriel, M.: Wear behaviour of steels for hot working rolling-mill rolls. CRM 57, 25–39 (1980)Google Scholar
  13. 13.
    Mohammed, T., Widell, B.: Roll wear evaluation of HSS, HiCr and IC work rolls in hot strip mill. Steel Research 74, 624–630 (2003)Google Scholar
  14. 14.
    Kivilcim, E.N., Nürnberg, G., Golle, M., Hoffmann, H.: Simulation of wear on sheet metal forming tools—An energy approach. Journal of Wear, 357–363 (2008)Google Scholar
  15. 15.
    Archard, J.F., Hirst, W.: Wear of metals under un-lubricated conditions. Proceedings of the Royal Society of London 236, 397–410 (1956)CrossRefGoogle Scholar
  16. 16.
    Byon, S.M., Kim, S.I., Lee, Y.: A semi-analytical model for predicting the wear contour in rod rolling process. Journal of Materials Processing Technology 191, 306–309 (2007)CrossRefGoogle Scholar
  17. 17.
    Bowden, F.P., Tabor, D.: Friction, lubrication and wear: a survey of work during the last decade. British Journal of App. Physics 17, 1521–1544 (1966)CrossRefGoogle Scholar
  18. 18.
    John, S., Sikdar, S., Mukhopadhyay, A.: Roll wear prediction model for finishing stands of hot strip mill. Iron and Steel Making 33, 169–175 (2006)CrossRefGoogle Scholar
  19. 19.
    Franzke, M., Puchhala, S., Dackweiler, H.: Modeling of interaction effects between strip and roll during flat rolling process. In: NUMIFORM Conference Proceedings, vol. 908, pp. 1489–1494 (2007)Google Scholar
  20. 20.
    Franzke, M., Puchhala, S., Dackweiler, H.: Modeling of interaction effects between process and machine during flat rolling process. In: PMI Conference Proceedings (2008)Google Scholar
  21. 21.
    Tseng, A.A., Huang, C.H.: The estimation of surface thermal behavior of the working roll in hot rolling process. Heat and Mass Transfer 18, 1019–1031 (1995)Google Scholar
  22. 22.
    Tseng, A.: Thermal modeling of roll and strip interface in rolling process: part 1 – review. Numerical Heat Transfer 35, 115–135 (1999)CrossRefGoogle Scholar
  23. 23.
    Tseng, A.: Thermal modeling of roll and strip interface in rolling process: part 2 – review. Numerical Heat Transfer 35, 135–154 (1999)CrossRefGoogle Scholar
  24. 24.
    Mikic, B.B.: Thermal contact conductance: Theoretical considerations. International Heat Transfer 17, 205–214 (1974)CrossRefGoogle Scholar
  25. 25.
    Yovanovich, M.M., De Vaal, J., Hegazy, A.: A statistical model to predict thermal gap conductance between conforming rough surfaces. AIAA Paper No: 82-0888 (1998)Google Scholar
  26. 26.
    Colas, R., Torres, M.: Modeling heat conduction through an oxide layer during hot rolling of steel. ASME Manufacturing Science Engineering 68(2), 577–582 (1994)Google Scholar
  27. 27.
    Browne, K.M., Dryden, J., Assefpour, M.: Modeling scaling and de-scaling in hot strip mills. Recent Advances in Heat Transfer and Micro Structure Modeling for Metal Processing 67, 187–201 (1995)Google Scholar
  28. 28.
    Ranta, H., Larkoila, J., Korhonen, A.S.: A study of scale effects during accelerated cooling. In: Modeling of Metal Rolling Process Conference Proceedings, pp. 638–647 (1993)Google Scholar
  29. 29.
    Tseng, A.A.: A numerical heat transfer analysis of strip rolling. ASME Journal of Heat Transfer 106, 512–517 (1984)CrossRefGoogle Scholar
  30. 30.
    Sellars, C.M., McLaern, A.J.: Modeling distribution of microstructure during hot rolling of stainless steel. Materials Science and Technology 8, 1090–1095 (1975)Google Scholar
  31. 31.
    Militzer, M., Nakata, N.: Modeling of microstructure evolution during hot rolling of a 780 MPa high strength steel. ISIJ 45, 82–90 (2005)CrossRefGoogle Scholar
  32. 32.
    Tseng, A.A., Lin, F.H., Gunderia, A.S., Ni, D.S.: Roll cooling and its relationship to roll life. Metallurgical Transactions 20A, 2305–2320 (1988)Google Scholar
  33. 33.
    Sun, C.G., Hwang, S.M.: Prediction of roll thermal profile in hot strip rolling by the FE Method. ISIJ 40, 794–801 (2000)CrossRefGoogle Scholar
  34. 34.
    Azene, Y.T., Roy, R., Farrugia, D., Onisa, C., Trumann, M.H.: Work roll cooling sys-tem design optimization in presence of uncertainty. In: CIRP Design Conference Proceedings, pp. 57–65 (2009)Google Scholar
  35. 35.
    Partender, E., Mitter, S.: Ein Modell zur Prognose des Arbeitswalzenverschleiß der Breibandstraße in Linz. In: XXII Verformungskundlisches Kolloquium (2003)Google Scholar
  36. 36.
  37. 37.
  38. 38.
    GOM, Optische 3D-Koordinatenmessmaschine,
  39. 39.
    Franzke, M.: Zielgrößenadaptierte Netzdiagnose und -generierung zur Anwendung der Finite Elemente Methode in der Umformtechnik. Dissertation, RWTH Aachen University (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • S. Puchhala
    • 1
  • M. Franzke
    • 1
  • G. Hirt
    • 1
  1. 1.Institute of Metal FormingRWTH Aachen UniversityAachenGermany

Personalised recommendations