Optimization of Tool and Process Design for the Cold Forging of Net-Shape Parts by Simulation

  • T. Kroiß
  • U. Engel
Conference paper
Part of the Lecture Notes in Production Engineering book series (LNPE)


As a result of the research work in this project, a comprehensive approach is presented for the consideration of the interactions between process, tool and machine in the FE-based design of cold forging tools and processes: The approach comprises an efficient determination of the deflection characteristic of press and tooling system and its subsequent condensed modeling in combination with the FE simulation of a cold forging process. Then, based on a set of simulations, a parametric process model is developed. It permits an optimization of the values of influencing parameters to achieve high workpiece accuracy considering the interactions. By acquiring and, afterwards, applying knowledge on the process behavior, the required number of simulations for the parametric process model and the optimization can be reduced considerably. The approach can be completed by using the parametric process model for estimating scatter and uncertainties of target values depending on those of the influencing parameters.


Tooling System Bottom Dead Center Full Factorial Experimental Design Workpiece Dimension Deflection Characteristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balendra, R.: Net-Shape-Forming: State of the Art. J. Mater. Process Technol. 115, 172–179 (2001), doi:10.1016/S0924-0136(01)00812-3CrossRefGoogle Scholar
  2. 2.
    Kroiss, T., Völkl, R., Engel, U., Geiger, M.: Modeling of Process-Tool-Machine Interactions in Cold Forging. In: Proc. 1st Int. Conf. on PMI, Hannover, Germany, pp. 125–132 (2008)Google Scholar
  3. 3.
    Behrens, B.A., Matthias, T., Czora, M., et al.: Improving the accuracy of numerical investigations of multi-stage sheet metal processes by coupling a process FE analysis with the machine simulation. In: Proc. 1st Int. Conf. on PMI, Hannover, Germany, pp. 133–139 (2008)Google Scholar
  4. 4.
    Brecher, C., Schapp, L., Paepenmüller, F.: Gekoppelte Simulation von Presse und Massivumformprozess. Berücksichtigung (nicht-)linearen Maschinenverhaltens in der Umformsimulation. wt Werkstattstechnik Online 96, 526–529 (2006)Google Scholar
  5. 5.
    Großmann, K., Wiemer, H., Hardtmann, A., Penter, L.: Faster to sound parts by advanced forming process simulation – advanced forming process model including the elastic effects of the forming press and tool. Steel Res. Int. 78, 825–830 (2007)Google Scholar
  6. 6.
    DIN 55189, Machine tools – determination of the ratings of presses for sheet metal working under static load. Beuth, Berlin (1988)Google Scholar
  7. 7.
    Chodnikiewicz, K., Balendra, R., Wanheim, T.: A new concept for the measurement of press stiffness. J. Mater. Process Technol. 44, 293–299 (1994), doi:10.1016/0924-0136(94)90442-1CrossRefGoogle Scholar
  8. 8.
    Arentoft, M., Wanheim, T.: A new Approach to determine Press Stiffness. CIRP Ann. 54(1), 265–268 (2005), doi:10.1016/S0007-8506(07)60099-7CrossRefGoogle Scholar
  9. 9.
    Kroiß, T., Engel, U., Merklein, M.: Simulation-Based Determination of Deflection Characteristic of Tooling System and its Modeling in FE Simulation of Cold Forging Process. Steel Res. Int (special ed. Met. Form 2010) 81, 318–321 (2010)Google Scholar
  10. 10.
    Kroiß, T., Engel, U., Merklein, M.: Process Modeling In Cold Forging Considering The Process-Tool-Machine Interactions. In: Proc. 10th Int. Conf. Numer. Methods Ind. Form Process, AIP Conf. Proc., vol. 1252, pp. 312–319 (2010)Google Scholar
  11. 11.
    Kroiß, T., Engel, U., Merklein, M.: Modeling of the Behavior of a Cold Forging Process Considering the Deflection of Tooling System and Press. In: Proc. 2nd Int. Conf. on PMI (2010) ISBN: 978-0-9866331-0-2Google Scholar
  12. 12.
    Spellucci, P.: Numerische Verfahren der nichtlinearen Optimierung. Birkhäuser, Basel (1993)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • T. Kroiß
    • 1
  • U. Engel
    • 1
  1. 1.Chair of Manufacturing TechnologyUniversität Erlangen-NürnbergBavariaGermany

Personalised recommendations