Modeling and Simulation-Based Optimization of a Turning Process

  • R. Britz
  • T. Maier
  • F. Schwarz
  • H. Ulbrich
  • M. F. Zaeh
Conference paper
Part of the Lecture Notes in Production Engineering book series (LNPE)


Today, the productivity of machine tools is limited by the interactions between machine and process. A method to predict these limits is presented here using simulation model and an appropriate optimization algorithm. Therefore, a short overview of the used theories in multi-body dynamics, cutting processes and the mechanical model of the turning lathe is given. Furthermore, a modular cutting force model as well as the coupling between process and structure is introduced. For optimization, it is necessary to develop an objective function, where the quality and the productivity of the processes have to be represented. Finally, results of the optimization process are shown.


Uncut Chip Thickness Unilateral Contact Tool Center Point Chip Width Force Application Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pfeiffer, F., Glocker, C.: Multi-body Dynamics with Unilateral Contacts. John Wiley & Sons, New York (1996)CrossRefGoogle Scholar
  2. 2.
    Britz, R., Ulbrich, H.: Lathe: Modeling and Coupling of process and structure. In: Proccedings of the 1st International Conference on Process Machine Interactions, pp. 231–238 (2008)Google Scholar
  3. 3.
    Förg, M., Zander, R., Ulbrich, H.: A framework for efficient simulation of spatial contact problems. In: ECCOMAS (2007)Google Scholar
  4. 4.
    Shabana, A.A.: Dynamics of Multi-body Systems. Cambridge University Press, Cambridge (1998)Google Scholar
  5. 5.
    Ulbrich, H.: Maschinendynamik. Teubner Verlag, Wiesbaden (1996)Google Scholar
  6. 6.
    Zaeh, M.F., Schwarz, F.: Consideration of Tool and Workpiece Temperatures in a Modular Cutting Force Model. In: Proceedings of the 1st International Conference on Process Machine Interactions, pp. 353–360 (2008)Google Scholar
  7. 7.
    Zaeh, M.F., Schwarz, F.: Modeling and Simulation of Process and Structure Interactions Considering Turning Operations. In: Proceedings of the ASME International Manufacturing Science and Engineering Conference (2009)Google Scholar
  8. 8.
    Oxley, P.L.: The mechanics of machining: an analytical approach to assessing machinability, Chichester u.a., Horwood (1989)Google Scholar
  9. 9.
    Altintas, Y.: Manufacturing Automation. Cambridge University Press, Cambridge (2000)Google Scholar
  10. 10.
    Schwarz, F.: Simulation der Wechselwirkungen zwischen Prozess und Struktur bei der Drehbearbeitung. iwb-Forschungsberichte Nr. 242. Herbert Utz Verlag, München (2010)Google Scholar
  11. 11.
    Yen, Y., Jain, A., Altan, T.: A finite element analysis of orthogonal machining using different tool edge geometries. J. Mat. Proc. Technol. 146, 72–81 (2004)CrossRefGoogle Scholar
  12. 12.
    Zerilli, F., Armstrong, R.: Dislocation-mechanics-based constitutive relations for material dynamics calculations. J. Appl. Phys. 61, 1816–1825 (1987)CrossRefGoogle Scholar
  13. 13.
    Zerilli, F.: Dislocation-mechanics-based constitutive equations. Metallurgical and Material Transactions 35A, 2547–2555 (2004)Google Scholar
  14. 14.
    Sartkulvanich, P., Koppka, F., Altan, T.: Determination of flow stress for metal cutting simulation – a progress report. J. Mat. Proc. Technol. 146, 61–71 (2004)CrossRefGoogle Scholar
  15. 15.
    Özel, T.: The influence of friction models on finite element simulations of machining. Int. J. Machine Tools and Manufacture 46, 518–530Google Scholar
  16. 16.
    Neumann, L., Ulbirch, H.: Optimisation of a CVT-Chain. In: Proceedings of the 6th World Congresses of Sturctural and Multidisciplinary (2005)Google Scholar
  17. 17.
    Choi, T.D., Eslinger, O.J., Gilmore, P.A., Kelly, C.T.: User’s Guide to IFFCO. Center for Research in Scientific Computation, North Carolina State University (2001)Google Scholar
  18. 18.
    Kelley, T.C.: Iterative Methods for Optimization. Frontiers in Applied Mathematics. SIAM, Philadelphia (1999)zbMATHCrossRefGoogle Scholar
  19. 19.
    Britz, R., Ulbrich, H.: Simulation of Facing Processes of Profiles with Hexagon Cross Section. In: Proceedings of the ASME International Manufacturing Science and Engineering Conference (2010)Google Scholar
  20. 20.
    Britz, R., Ulbrich, H.: Modeling and Simulation-based Optimization of a Facing Process. In: Proceedings of the 2ndt International Conference on Process Machine Interactions (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • R. Britz
    • 1
  • T. Maier
    • 1
  • F. Schwarz
    • 1
  • H. Ulbrich
    • 1
  • M. F. Zaeh
    • 1
  1. 1.Institute of Applied Mechanics, Department of Mechanical EngineeringTechnische Universität MünchenMünchenGermany

Personalised recommendations