Surface Generation Process with Consideration of the Balancing State in Diamond Machining

Conference paper
Part of the Lecture Notes in Production Engineering book series (LNPE)


In order to manufacture optical components or mechanical parts with high requirements regarding surface quality, diamond machining is frequently applied. Nevertheless, to achieve the desired surface quality, the understanding of the surface generation process and its influencing parameters is highly important. One crucial parameter is the residual unbalance of the main spindle. As the residual unbalance affects the process and vice versa, the investigation of the process-machine interaction is necessary. In this paper results of experimental work and mathematical modelling of diamond machining under varying balancing states are presented. The experiments show the connection between unbalances and resulting surface quality; the mathematical model provides the possibility to simulate the surface quality for given unbalances distributions. Furthermore, regularization techniques in order to solve the inverse problem of computing the optimal balancing state for a given or desired surface quality are presented.


Machine Tool Thrust Force Form Deviation Ultraprecision Machine Diamond Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DIN ISO 1940-1 mechanical vibration - balance quality requirements for rotors in a constant (rigid) state - part 1: Specification and verification of balance tolerancesGoogle Scholar
  2. 2.
    Brandt, C., Niebsch, J., Ramlau, R., Maass, P.: Modeling the influence of unbalances for ultra-precision cutting processes. ZAMM - Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 91(10), 795–808 (2011), doi:10.1002/zamm.201000155zbMATHCrossRefGoogle Scholar
  3. 3.
    Brandt, C., Niebsch, J., Vehmeyer, J.: Modelling of ultra-precision turning process in consideration of unbalances. In: 13th CIRP Conference on Modeling of Machining Operations (2011)Google Scholar
  4. 4.
    Brinksmeier, E., Gläbe, R., Krause, A.: Precision balancing in ultraprecision diamond machining. In: Laser Metrology and Machine Performance 8, Lamdamap 2007, vol. 8, pp. 262–269 (2007)Google Scholar
  5. 5.
    Brinksmeier, E., Krause, A.: Dual plane balancing for diamond machining processes. In: 3rd International Conference High Performance Cutting (HPC), Dublin, pp. 517–528 (2008)Google Scholar
  6. 6.
    Brinksmeier, E., Krause, A.: Surface generation in ultraprecision diamond machining utilising dual-plane-balancing. In: International Conference on Process Machine Interactions, Hannover, pp. 335–342 (2008)Google Scholar
  7. 7.
    Brinksmeier, E., Riemer, O.: Deterministic prodcution of complex optical elements. International Journal of Production Engineering and Computers - Special Issue on CAPP and Advances in Cutting Technology 4(5), 63–72 (2002)Google Scholar
  8. 8.
    Gasch, R., Knothe, K.: Strukturdynamik Bd. 2: Kontinua und ihre Diskretisierung. Springer, Berlin (1989); IX, 336 S: graph. DarstGoogle Scholar
  9. 9.
    Jin, X., Altintas, Y.: Slip-line field model of micro-cutting process with round tool edge effect. Journal of Materials Processing Technology (2010) (in press), doi:10.1016/j.jmatprotec.2010.10.006Google Scholar
  10. 10.
    Köhler, J.: Berechnung der Zerspankräfte bei variierenden Spanungsquerschnittsformen. Ph.D. thesis, Leibniz Universität Hannover (2010)Google Scholar
  11. 11.
    Krause, B.: Process forces in diamond machining with consideration of unbalances. In: CIRP PMI, Vancouver (2010)Google Scholar
  12. 12.
    Malekian, M., Park, S., Jun, M.: Investigation of critical chip thickness and micro ploughing forces. In: Proceedings of the 2nd International Conference on Process Machine Interactions, Vancouver, Canada, June 10-11 (2010)Google Scholar
  13. 13.
    Schneider, H.: Auswuchttechnik. Springer (2007)Google Scholar
  14. 14.
    Tönshoff, H.K., Denkena, B.: Spanen: Grundlagen, 2., erw. und neu bearb. aufl edn. Springer, Berlin (2004); XXIV, 417 S.: Ill., graph. DarstGoogle Scholar
  15. 15.
    Vollertsen, F., Biermann, D., Hansen, H., Jawahir, I., Kuzman, K.: Size effects in manufacturing of metallic components. CIRP Annals - Manufacturing Technology 58(2), 566–587 (2009), doi:10.1016/j.cirp.2009.09.002CrossRefGoogle Scholar
  16. 16.
    Dong, W.P., Blunt, L.: Three-dimensional surface topography, 2nd edn. Penton Press (2000),, XXII, 285 S
  17. 17.
    Weber, M., Autenrieth, H., Kotschenreuther, J., Gumbsch, P., Schulze, V., Lohe, D., Fleischer, J.: Influence of friction and process parameters on the specific cutting force and surface characteristics in micro cutting. Machining Science and Technology 12, 474–497 (2008), doi:10.1080/10910340802518728Google Scholar
  18. 18.
    Zhou, S., Shi, J.: Active balancing and vibration control of rotating machinery: A survey. The Shock and Vibration Digest 33, 361–371 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Center for Industrial MathematicsUniversity of BremenBremenGermany
  2. 2.Johann Radon Institute for Computational and Applied MathematicsAustrian Academy of SciencesLinzAustria
  3. 3.Foundation Institute of Materials Science, Laboratory of Precision MachiningUniversity of BremenBremenGermany
  4. 4.Industrial Mathematics InstituteJohannes Kepler University LinzLinzAustria

Personalised recommendations