Numerical Computation Methods for Modeling the Phenomenon of Tool Extraction

  • B. Denkena
  • E. P. Stephan
  • M. Maischak
  • D. Heinisch
  • M. Andres
Conference paper
Part of the Lecture Notes in Production Engineering book series (LNPE)


Tool extraction is a phenomenon, where the end mill slips out of the shrink-fit chuck in axial direction during the cutting process. This leads to severe damage of the workpiece, the tool and in some cases even the machine spindle. So far, this is an unexplained problem with no repeatability. In this article, experimental investigations such as scanning electron microscopy (SEM) and residual stress measurements on the clamping surface of shrink-fit chucks affected by tool extraction are presented. Furthermore, results from experiments on a special testrig and a mathematical approach, which aims at the prediction of failures due to Process Machine Interaction, are described. Within the mathematical approach, a finite element model of the tool and the tool holder is linked with a cutting force simulation. The dynamic behavior of the spindle is determined by frequency response function measurements. From these measurements, a modal model is deduced and coupled with the finite element model of the tool holder. The presented mathematical model is used to compute the resulting stresses in the interface of those components due to process forces.


Discontinuous Galerkin Method Tool Holder Residual Stress Measurement Tool Deflection Process Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schulz, H., Rondé, U.: Werkzeuge schrumpfspannen. Werkstatt und Betrieb 127(11), 873–875 (1994)Google Scholar
  2. 2.
    Eastman, M.: Shrink-Fit Toolholding, Cutting Tool Engineering 49(3) (1997)Google Scholar
  3. 3.
    Deutsches Institut für Normung e.V., Pressverbände - Berechnungsgrundlagen und Gestaltungsregeln. Beuth Verlag, Berlin (February 2001) 17.040.10; 21.120.10/Google Scholar
  4. 4.
    Rondé, U.: Untersuchung von Systemen zum Spannen von Zylinderschaftwerkzeugen unter besonderer Berücksichtigung ihrer Eignung für die Hochgeschwindigkeitsbearbeitung, Dissertation, Darmstadt (1994)Google Scholar
  5. 5.
    Denkena, B., Stephan, E.P., Maischak, M., Heinisch, D., Andres, M.: Numerical computation methods for process-oriented structures in metal chipping. In: Denkena, B. (ed.) 1st International Conference on Process Machine Interactions, vol. 1, pp. 247–256. PZH Produktionstechn, Zentrum (2008)Google Scholar
  6. 6.
    Denkena, B., Stephan, E.P., Maischak, M., Heinisch, D., Andres, M., Krüger, M.: Investigations on Dynamic Tool, Structure and Process Interaction. In: Altintas, Y. (ed.) 2nd International Conference on Process Machine Interactions, Vancouver (2010)Google Scholar
  7. 7.
    Fladerer, F.: Haltemomente sind beim Schrumpfen ein Maß für die Produktivität. Maschinenmarkt 31(32), 28–29 (2007)Google Scholar
  8. 8.
    Johnson, C.: Numerical solution of partial differential equations by the finite element method. Dover Publ., Mineola (2009)zbMATHGoogle Scholar
  9. 9.
    Li, X.D., Wiberg, N.E.: Structural dynamic analysis by a time-discontinuous Galerkin finite element method. Internat. J. Numer. Methods Engrg. 39(12), 2131–2152 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Duarte, M.L.M.: Experimentally derived structural models for use in further dynamic analysis, Dissertation, University of London (1996)Google Scholar
  11. 11.
    Ewins, D.J.: Modal testing, Theory, practice and application. Research Studies Press, Baldock (2000)Google Scholar
  12. 12.
    Allen, M.S., Mayes, R.L., Bergman, E.J.: Experimental modal substructuring to couple and uncouple substructures with flexible fixtures and multi-point connections. Journal of Sound and Vibration 329(23), 4891–4906 (2010)CrossRefGoogle Scholar
  13. 13.
    Altintas, Y., Weck, M.: Chatter Stability of Metal Cutting and Grinding. CIRP Annals - Manufacturing Technology 53(2), 619–642 (2004)CrossRefGoogle Scholar
  14. 14.
    Park, S.S., Altintas, Y., Movahhedy, M.: Receptance coupling for end mills. International Journal of Machine Tools and Manufacture 43(9), 889–896 (2003)CrossRefGoogle Scholar
  15. 15.
    Filiz, S., Cheng, C.H., Powell, K.B., Schmitz, T.L., Ozdoganlar, O.B.: An improved tool-holder model for RCSA tool-point frequency response prediction. Precision Engineering 33(1), 26–36 (2009)CrossRefGoogle Scholar
  16. 16.
    Schmitz, T.L.: Torsional and axial frequency response prediction by RCSA. Precision Engineering 34(2), 345–356 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Özsahin, O., Ertürk, A., Özgüven, H.N., Budak, E.: A closed-form approach for identification of dynamical contact parameters in spindle-holder-tool assemblies. International Journal of Machine Tools and Manufacture 49(1), 25–35 (2009)CrossRefGoogle Scholar
  18. 18.
    Ertürk, A., Özgüven, H.N., Budak, E.: Analytical modeling of spindle-tool dynamics on machine tools using Timoshenko beam model and receptance coupling for the prediction of tool point FRF. International Journal of Machine Tools and Manufacture 46(15), 1901–1912 (2006)CrossRefGoogle Scholar
  19. 19.
    Ahmadian, H., Nourmohammadi, M.: Tool point dynamics prediction by a three-component model utilizing distributed joint interfaces. International Journal of Machine Tools and Manufacture 50(11), 998–1005 (2010)CrossRefGoogle Scholar
  20. 20.
    Kolar, P., Sulitka, M., Janota, M.: Simulation of dynamic properties of a spindle and tool system coupled with a machine tool frame. The International Journal of Advanced Manufacturing Technology, 1–10 (2010)Google Scholar
  21. 21.
    Clausen, M.: Zerspankraftprognose und-simulation für Dreh-und Fräsprozesse, Hannover (2005)Google Scholar
  22. 22.
    Denkena, B., Tracht, K., Schmidt, C.: A flexible force model for predicting cutting forces in end milling. Production Engineering – Research and Development 13(2), 15–20 (2006)Google Scholar
  23. 23.
    Denkena, B., Schmidt, C.: Experimental Investigation and Simulation of Machining Thin-Walled Workpieces. Production Engineering – Research and Development 1(4), 343–350 (2007)CrossRefGoogle Scholar
  24. 24.
    Altintas, Y.: Manufacturing automation. Metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge Univ. Press, Cambridge (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • B. Denkena
    • 1
  • E. P. Stephan
    • 2
  • M. Maischak
    • 2
  • D. Heinisch
    • 1
  • M. Andres
    • 2
  1. 1.Institute of Production Engineering and Machine ToolsLeibniz Universität HannoverHannoverGermany
  2. 2.Institute for Applied MathematicsLeibniz Universität HannoverHannoverGermany

Personalised recommendations