Process Machine Interactions in Micro Milling

  • E. Uhlmann
  • F. Mahr
  • Y. Shi
  • U. von Wagner
Conference paper
Part of the Lecture Notes in Production Engineering book series (LNPE)


In this chapter, both analytical and experimental studies on the process stability of micro milling are presented. The investigations are carried out in order to improve a comprehensive model, which describes interactions of the dynamic cutting forces and the dynamic machine tool behavior including the end mill. Dominant chatter frequencies at different operating points are determined by analyzing the process forces, acoustic signals as well as optical measurement signals. Results are documented and discussed by means of stability lobe diagrams. The findings are confirmed by analyses of the milled surfaces. Finally, some suggestions for improving the parameter identification are given.


Machine Tool Spindle Speed Tool Center Point Experimental Modal Analysis Stability Chart 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altintas, Y., Budak, E.: Analytical prediction of stability lobes in milling. CIRP Annals 44, 357–362 (1995)CrossRefGoogle Scholar
  2. 2.
    Bayly, P.V., Halley, J.E., Mann, B.P., Davies, M.A.: Stability of interrupted cutting by temporal finite element analysis. ASME J. Manuf. Sci. Eng. 125, 220–225 (2003)CrossRefGoogle Scholar
  3. 3.
    Brammertz, P.H.: Die Entstehung der Oberflächenrauheit beim Feindrehen- Bericht aus dem Laboratorium für Werkzeugmaschinen und Betriebslehre der TH Aachen, Industrie-Anzeiger, Essen, Nr.2, pp. 25–32 (1961)Google Scholar
  4. 4.
    Budak, E., Altintas, Y.: Analytical Prediction of Chatter Stability Conditions for Multidegree of Freedom Systems in Milling. Part I: General Formulation, Part II: Application of the General formulation to Common Milling Systems. Transactions of the ASME J. Eng. Ind. 120, 22–36 (1998)Google Scholar
  5. 5.
    Duarte, M.L.M., Ewins, D.J.: Rotational degrees of freedom for structural coupling analysis via finite-difference technique with residual compensation. Mech. Syst. Signal Process 14(2), 205–227 (2000)CrossRefGoogle Scholar
  6. 6.
    Filiz, S., Ozdoganlar, O.B.: A three-dimensional model for the dynamics of micro-endmills including bending, torsional and axial vibrations. Precis. Eng. 35, 24–37 (2011)CrossRefGoogle Scholar
  7. 7.
    Insperger, T., Stépán, G.: Updated semi-discretization method for periodic delay-differential equations with discrete delay. Int. J. Numer. Methods Eng. 61, 117–141 (2004)zbMATHCrossRefGoogle Scholar
  8. 8.
    Jun, M.B.G., DeVor, R.E., Kapoor, S.G.: Investigation of the Dynamics of Microend Milling—Part II: Model Validation and Interpretation. ASME J. Manuf. Sci. Eng. 128, 901–912 (2006)CrossRefGoogle Scholar
  9. 9.
    Kienzle, O., Victor, H.: Spezifische Schnittkräfte bei der Metallbearbeitung. Werkstatttechnik und Maschinenbau 47(5), 224–225 (1957)Google Scholar
  10. 10.
    L’Vov, N.P.: Determining the minimum possible Chip-Thickness. Machines & Tooling 40(4), 45–46 (1968)Google Scholar
  11. 11.
    Malekian, M., Park, S.S., Jun, M.B.G.: Investigation of Critical Chip Thickness and Micro Ploughing Forces. In: Proceedings of CIRP 2nd International Conference on Process Machine Interactions, Vancouver, Canada (2010)Google Scholar
  12. 12.
    Mascardelli, B.A., Park, S.S., Freiheit, T.: Substructure coupling of microend mills to aid in the suppression of chatter. ASME J. Manuf. Sci. Eng. 130, 011010 (2008)Google Scholar
  13. 13.
    Moriwaki, T., Shamoto, E.: Ultraprecision Ductile Cutting of Glass by Applying Ultrasonic Vibration. Annals of the CIRP 41(1), 141–144 (1992)CrossRefGoogle Scholar
  14. 14.
    Nelson, H.D., McVaugh, J.M.: The dynamics of rotor-bearing systems using finite elements. ASME J. Eng. Ind. 98(2), 593–600 (1976)CrossRefGoogle Scholar
  15. 15.
    Schauer, K.: Entwicklung von Hartmetallwerkzeugen für die Mikrozerspanung mit definierter Schneide, Dissertation, TU Berlin (2006)Google Scholar
  16. 16.
    Schmitz, T.L., Donaldson, R.R.: Predicting high-speed machining dynamics by substructure analysis. CIRP Ann. - Manuf. Technol. 49(1), 303–308 (2000)CrossRefGoogle Scholar
  17. 17.
    Shi, Y., Mahr, F., von Wagner, U., Uhlmann, E.: A spatial multiple degree of freedom machine tool model for micro milling simulation. In: Proc. 2nd CIRP-PMI, MM06, Vancouver (2010)Google Scholar
  18. 18.
    Uhlmann, E., Mahr, F., Shi, Y., von Wagner, U., Eßmann, J.: Interactions between mechanical vibrations and surface roughness during the micro milling process. In: Proceedings of CIRP 1st International Conference on Process Machine Interactions, Hannover, Germany, pp. 978–973 (2008)Google Scholar
  19. 19.
    Wauer, J.: Kontinuumsschwingungen. Vieweg+Teubner Verlag, Wiesbaden (2008)Google Scholar
  20. 20.
    Yuan, Z., Zhou, M., Dong, S.: Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultraprecission machining. Journal of Materials Processing Technology 62, S.327–S.330 (1996)Google Scholar
  21. 21.
    Zorzi, E.S., Nelson, H.D.: Finite element simulation of rotor-bearing systems with internal damping. ASME J. Eng. Power 99(1), 71–76 (1977)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • E. Uhlmann
    • 1
  • F. Mahr
    • 1
  • Y. Shi
    • 2
  • U. von Wagner
    • 2
  1. 1.Institute of Machine Tools and Factory ManagementTechnische Universität BerlinBerlinGermany
  2. 2.Departments of Mechanics, Chair of Mechatronics and Machine DynamicsTechnische Universität BerlinBerlinGermany

Personalised recommendations