Analysis of Industrial Robot Structure and Milling Process Interaction for Path Manipulation

  • J. Bauer
  • M. Friedmann
  • T. Hemker
  • M. Pischan
  • C. Reinl
  • E. Abele
  • O. von Stryk
Part of the Lecture Notes in Production Engineering book series (LNPE)

Abstract

Industrial robots are used in a great variety of applications for handling, welding, assembling and milling operations. Especially for machining operations, industrial robots represent a cost-saving and flexible alternative compared to standard machine tools. Reduced pose and path accuracy, especially under process force load due to the high mechanical compliance, restrict the use of industrial robots for machining applications with high accuracy requirements. In this chapter, a method is presented to predict and compensate path deviation of robots resulting from process forces. A process force simulation based on a material removal calculation is presented. Furthermore, a rigid multi-body dynamic system’s model of the robot is extended by joint elasticities and tilting effects, which are modeled by spring-damper-models at actuated and additional virtual axes. By coupling the removal simulation with the robot model the interaction of the milling process with the robot structure can be analyzed by evaluating the path deviation and surface structure. With the knowledge of interaction along the milling path a general model-based path correction strategy is introduced to significantly improve accuracy in milling operations.

Keywords

Chip Thickness Industrial Robot Path Deviation Process Force Robot Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abele, E., Bauer, J., Rothenbücher, S., Stelzer, M., Stryk, O.: Prediction of the Tool Displacement by Coupled Models of the Compliant Industrial Robot and the Milling Process. In: Conference on Process Machine Interaction, Hannover (2008)Google Scholar
  2. 2.
    Weigold, M.: Kompensation der Werkzeugabdrängung bei der spanenden Bearbeitung mit Industrierobotern. PhD Thesis TU Darmstadt (2008) ISBN 978-3-8322-7178-7Google Scholar
  3. 3.
    Altintas, Y.: Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations and CNC Design. Cambridge University Press (2000)Google Scholar
  4. 4.
    Craig, J.J.: Robotics. Addison-Wesley (1989)Google Scholar
  5. 5.
    Walker, M.W., Orin, D.E.: Efficient Dynamics Computer Simulation of Robotic Mechanisms. Journal of Dynamic Systems, Measurement, and Control 104, 205–211 (1982)MATHCrossRefGoogle Scholar
  6. 6.
    Featherstone, R.: Rigid Body Dynamics Algorithms. Springer (2008)Google Scholar
  7. 7.
    Höpler, R.: A unifying object-oriented methodology to consolidate multibody dynamics computations in robot control, PhD Thesis TU Darmstadt (2004)Google Scholar
  8. 8.
    Stelzer, M.: Forward Dynamics Simulation and Optimization of Walking Robots and Humans, PhD Thesis TU Darmstadt (2007)Google Scholar
  9. 9.
    Friedmann, M.: Simulation of Autonomous Robot Teams with Adaptable Levels of Abstraction, PhD Thesis TU Darmstadt (2009)Google Scholar
  10. 10.
    Walther, A., Griewank, A.: ADOL-C: A Package for the Automatic Differentiation of Algorithms Written in C/C++. Version 2.1.12, Documentation, https://projects.coin-or.org/ADOL-C
  11. 11.
    von Stryk, O.: User’s Guide for DIRCOL (Version 2.1): a direct collocation method for the numerical solution of optimal control problems, TU Darmstadt (2000), http://www.sim.informatik.tu-darmstadt.de/sw/dircol
  12. 12.
    Rehling, S.: Technologische Erweiterung der Simulation von NC-Fertigungsprozessen, PhD Thesis Universität Hannover (2009)Google Scholar
  13. 13.
    Surmann, T.: Geometrisch-physikalische Simulation der Prozessdynamik für das fünfachsige Fräsen von Freiformflächen, PhD Thesis TU Dortmund (2005)Google Scholar
  14. 14.
    Stautner, M.: Simulation und Optimierung der mehrachsigen Fräsbearbeitung, PhD Thesis TU Dortmund, München (2002) ISBN 3-8027-8732-3 Google Scholar
  15. 15.
    Selle, J.: Technologiebasierte Fehlerkorrektur für das NC-Schlichtfräsen, PhD Thesis Universität Hannover (2005)Google Scholar
  16. 16.
    Weinert, K., Müller, H., Kreis, W., Surmann, T., Ayasse, J., Schüppstuhl, T., Kneupner, K.: Diskrete Werkstückmodellierung zur Simulation von Zerspanprozessen. In: Zeitschrift für wirtschaftlichen Fabrikbetrieb: ZWF, München, pp. 385–389 (2002) ISSN 0932-0482Google Scholar
  17. 17.
    KUKA Roboter GmbH. Data sheet KR 210-2. Gersthofen - Germany (July 2009), http://www.kuka-robotics.com

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. Bauer
    • 1
  • M. Friedmann
    • 2
  • T. Hemker
    • 2
  • M. Pischan
    • 1
  • C. Reinl
    • 2
  • E. Abele
    • 1
  • O. von Stryk
    • 2
  1. 1.Institute of Production Management, Technology and Machine ToolsTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Department of Computer Science, Simulation, Systems Optimization and Robotics GroupTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations