Advertisement

Visible and Infrared Image Registration Employing Line-Based Geometric Analysis

  • Jungong Han
  • Eric Pauwels
  • Paul de Zeeuw
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7252)

Abstract

We present a new method to register a pair of visible (ViS) and infrared (IR) images. Unlike most of existing systems that align interest points of two images, we align lines derived from edge pixels, because the interest points extracted from both images are not always identical, but most major edges detected from one image do appear in another image. To solve feature matching problem, we emphasize the geometric structure alignment of features (lines), instead of descriptor-based individual feature matching. This is due to the fact that image properties and patch statistics of corresponding features might be quite different, especially when one compares ViS image with long wave IR images (thermal information). However, the spatial layout of features for both images always preserves consistency. The last step of our algorithm is to compute the image transform matrix, given minimum 4 pairs of line correspondence. The comparative evaluation for algorithms demonstrates higher accuracy attained by our method when compared to the state-of-the-art approaches.

Keywords

Image Registration line detection geometric analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brown, L.: A Survey of Image Registration Techniques. ACM Computing Surveys 24(4), 325–376 (1992)CrossRefGoogle Scholar
  2. 2.
    Zitova, B., Flusser, J.: Image Registration Methods: A Survey. Image and Vision Computing 21, 977–1000 (2003)CrossRefGoogle Scholar
  3. 3.
    Xiong, Z., Zhang, Y.: A Critical Review of Image Registration Methods. Int. J. Image and Data Fusion 1(2), 137–158 (2010)CrossRefGoogle Scholar
  4. 4.
    Lee, J., Kim, Y., Lee, D., Kang, D., Ra, J.: Robust CCD and IR Image Registration Using Gradient-Based Statistical Information. IEEE Signal Processing Letter 17(4), 347–350 (2010)CrossRefGoogle Scholar
  5. 5.
    Kim, Y., Lee, J., Ra, J.: Multi-Sensor Image Registration Based on Intensity and Edge Orientation information. Pattern Recognition 41, 3356–3365 (2008)zbMATHCrossRefGoogle Scholar
  6. 6.
    Coiras, E., Santamaria, J., Miravet, C.: Segment-Based Registration Technique for Visual-Infrared Images. Optical Engineering 39, 282–289 (2000)CrossRefGoogle Scholar
  7. 7.
    Huang, X., Chen, Z.: A Wavelet-Based Multisensor Image Registration Algorithm. In: Proc. ICSP, pp. 773–776 (2002)Google Scholar
  8. 8.
    Han, J., Bhanu, B.: Fusion of Color and Infrared Video for Moving Human Detection. Pattern Recognition 40, 1771–1784 (2007)zbMATHCrossRefGoogle Scholar
  9. 9.
    Caspi, Y., Simakov, D., Irani, M.: Feature-Based Sequence to Sequence Matching. Int. J. Comput. Vision 68(1), 53–64 (2006)CrossRefGoogle Scholar
  10. 10.
    Han, J., Farin, D., de With, P.: Broadcast Court-Net Sports Video Analysis Using Fast 3-D Camera Modeling. IEEE Trans. Circuits Syst. Video Techn. 18(11), 1628–1638 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jungong Han
    • 1
  • Eric Pauwels
    • 1
  • Paul de Zeeuw
    • 1
  1. 1.Centrum Wiskunde and Informatica (CWI)AmsterdamThe Netherlands

Personalised recommendations