Design Smart City Based on 3S, Internet of Things, Grid Computing and Cloud Computing Technology

  • Min Hu
  • Chang Li
Part of the Communications in Computer and Information Science book series (CCIS, volume 312)


With High-technology and society being developed rapidly, there is a trend which is from digital earth to smart earth. Moreover, smart city is one of most important work in smart earth. Therefore, how to realize or design smart city leaves much to be desired. This paper puts forward some strategies and architectures for designing smart city based on geo-spatial information science and technology (GPS, GIS and RS), IT, communication technology, network technology (smart sensor web and ubiquitous sensor network), spatial data mining, high performance computing (grid computing and cloud computing), GPU, artificial intelligence and pattern recognition. The link and elements of smart city as well as applied key technologies in the future are outlined with some typical application instances, which will meet the versatile requirements of smart city service better.


digital earth smart earth geo-spatial information 3S(GPS GIS and RS) GPU grid computing cloud computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
  3. 3.
    Nicos, K.: Intelligent cities: innovation, knowledge systems and digital spaces. Spon Press, London (2002)Google Scholar
  4. 4.
    Li, D., Gong, J., Shao, Z.: From Digital Earth to Smart Earth. Geomatics and Information Science of Wuhan University 35(2), 127–132 (2010)Google Scholar
  5. 5.
    Tong, Q.: Earth Observation From Space and Human Demension for Global Change Studies. Advances in Earth Science 20(1), 1–5 (2005)Google Scholar
  6. 6.
    Zhang, Y., Zhang, Z., Zhang, J., Wu, J.: 3D Building Modelling with Digital Map, LIDAR Data and Video Image Sequences. Photogrammetric Record 20(111), 285–302 (2005)zbMATHCrossRefGoogle Scholar
  7. 7.
    Gong, P.: Some essential questions in remote sensing science and technology. Journal of Remote Sensing 13(1), 1–23 (2009)Google Scholar
  8. 8.
    Li, C., Zhang, J., Hu, M.: Auto-reconstructing 3D street elevation for cyber city. Engineering Journal of Wuhan University 42(3), 358–361 (2009)Google Scholar
  9. 9.
    Li, C., Li, X., Zhu, A., Li, Q.: Study on auto-reconstructing 3D framework outline of city building. Computer Engineering and Applications 47(8), 4–6 (2011)Google Scholar
  10. 10.
    Li, C., Zhou, Y.: 3D Auto-Reconstruction for Street Elevation Based on Line and Plane Feature. In: The 2nd International Conference on Computer and Automation Engineering, Singapore, February 26-28, vol. 1, pp. 460–466 (2010)Google Scholar
  11. 11.
    Li, C., Guo, J., Xia, Y.: Image Auto-Mosaic for Large Angle of Obliquity Close-Range Sequential Images to Realize Cyber City. In: 2008 International Symposium on Information Processing, Moscow, May 23-25, pp. 384–388 (2008)Google Scholar
  12. 12.
    Almasi, G.S., Gottlieb, A.: Highly Parallel Computing. Benjamin-Cummings publishers, Redwood City (1989)zbMATHGoogle Scholar
  13. 13.
    Zhang, Z.: From Digital Photogrammetry Workstation (DPW) to Digital Photogrammetry Grid (DPGrid). Geomatics and Information Science of Wuhan University 32, 565–571 (2007)Google Scholar
  14. 14.
    Zhang, Z., Zhang, Y., Ke, T., Guo, D.: Photogrammetry for First Response in Wenchuan Earthquake. Photogrammetric Engineering & Remote Sensing 75(5), 510–513 (2009)Google Scholar
  15. 15.
    Atkin, D.: Computer Shopper: The Right GPU for You (retrieved May 15, 2007)Google Scholar
  16. 16.
    Ashton, K.: That ’Internet of Things’ Thing. RFID Journal 22 (Juli 2009); Abgerufen am 8 (April 2011) Google Scholar
  17. 17.
    Magrassi, P., Panarella, A., Deighton, N., Johnson, G.: Computers to Acquire Control of the Physical World, Gartner research report T-14-0301 (September 28, 2001)Google Scholar
  18. 18.
    Commission of the European Communities. Internet of Things — An action plan for Europe (PDF). COM, 278 final (June 18, 2009)Google Scholar
  19. 19.
    Casaleggio Associati The Evolution of Internet of Things (2011)Google Scholar
  20. 20.
    Delin, K., Jackson, S.: Sensor Web for In Situ Exploration of Gaseous Biosignatures. In: IEEE Aerospace Conference (2000)Google Scholar
  21. 21.
    Delin, K.: Sensor Webs in the Wild. In: Wireless Sensor Networks: A Systems Perspective. Artech House (2005)Google Scholar
  22. 22.
    Torres-Martinez, E., Paules, G., Schoeberl, M., Kalb, M.: A Web of Sensors: Enabling the Earth Science Vision. Acta Astronautica 53(4-10), 423–428 (2003)CrossRefGoogle Scholar
  23. 23.
    Botts, M., Percivall, G., Reed, C., Davidson, J.: OGC® Sensor Web Enablement: Overview and High Level Architecture. In: Nittel, S., Labrinidis, A., Stefanidis, A. (eds.) GSN 2006. LNCS, vol. 4540, pp. 175–190. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Al-Hader, M., Rodzi, A., Sharif, A.R., Ahmad, N.: SOA of Smart City Geospatial Management. In: 2009 Third UKSim European Symposium on Computer Modeling and Simulation, pp. 6–10 (2009)Google Scholar
  25. 25.
    Li, D.: On Generalized and Specialized Spatial Information Grid. Journal of Remote Sensing 9(5), 513–520 (2005)Google Scholar
  26. 26.
    Li, D., Wang, S., Li, D., Wang, X.: Theories and Technologies of Spatial Data Mining. Geomatics and Information Science of Wuhan University 27(3), 221–233 (2002)Google Scholar
  27. 27.
    Li, D., Di, K., Li, D., Shi, X.: Mining Association Rules with Linguistic Cloud Models. Journal of Software 11(2), 143–158 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Min Hu
    • 1
    • 2
  • Chang Li
    • 3
  1. 1.High Military Tech Staff RoomChinese PLA Defense Information AcademyWuhanChina
  2. 2.School of Economics and ManagementChina University of GeosciencesWuhanChina
  3. 3.College of Urban and Environmental ScienceCentral China Normal UniversityWuhanChina

Personalised recommendations