Emissions from Forest Fires: Methods of Estimation and National Results

  • Valentina Bacciu
  • Donatella Spano
  • Michele Salis
Part of the Environmental Science and Engineering book series (ESE)


Emissions from forest fires are recognized to be an important health and environment issue. Fire emissions (FE) include a wide range of gaseous compounds and particles significantly contributing to the atmospheric budgets at local, regional and even global scale. In the last decades, several experimental and modelling studies were carried out to improve knowledge of the atmospheric impact of vegetation fires. FE estimates are affected by several errors and uncertainties; improvements were made possible through new advances in remote sensing, experimental measurements of emission factors and fuel consumption models. In this context, the aim of this chapter is to summarize the state of the research concerning atmospheric FE, highlighting the main methodologies and related uncertainties. In addition, this work presents an overview of historical trends and future scenarios of FE in Italy, starting from the most recent inventories.


Forest Fire Emission Factor Climate Policy Biomass Burning Burned Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albini FA (1976a) Computer-based models of wildland fire behavior: a users’ manual. USDA Forest Service, Intermountain and Range Experiment Station, Ogden, UTGoogle Scholar
  2. Albini FA, Brown JK, Reinhardt ED, Ottmar RD (1995) Calibration of a large fuel Burnout model. Int J Wildland Fire 5(3):173–192Google Scholar
  3. Albini FA, Reinhardt ED (1995) Modeling ignition and burning rate of large woody natural fuels. Int J Wildland Fire 5(2):81–91Google Scholar
  4. Albini FA, Reinhardt ED (1997) Improved calibration of a large fuel burnout model. Int J Wildland Fire 7(1):21–28CrossRefGoogle Scholar
  5. Al-Saadi JA, Soja AJ, Pierce RB, Szykman J, Wiedinmyer C, Emmons LK, Kondragunta S, Zhang X, Kittaka C, Schaack T, Bowman K (2008) Evaluation of near-realtime biomass burning emissions estimates constrained by satellite active fire detections. J Remote Sens Appl. doi: 10.1117/1.2948785
  6. Alves CA, Gonçalves C, Pio CA, Mirante F, Caseiro A, Tarelho L, Freitas MC, Viegas DX (2010) Smoke emissions from biomass burning in a Mediterranean shrubland. Atmos Environ 44:3024–3033CrossRefGoogle Scholar
  7. Alves CA, Vicente A, Nunes T, Gonçalves C, Fernandes AP, Mirante F, Tarelho L, Sánchez de la Campa AM, Querol X, Caseiro A, Monteiro C, Evtyugina M, Pio C (2011) Summer 2009 wildfires in Portugal: Emission of trace gases and aerosol composition. Atmos Environ. doi: 10.1016/j.atmosenv.2010.10.031 Google Scholar
  8. Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Global Biogeochem Cy 15:955–966CrossRefGoogle Scholar
  9. Arca B, Bacciu V, Duce P, Pellizzaro G, Salis M, Spano D (2009) Maps of the likelihood of spread and severity of fire in a report different scenarios of fuel moisture and weather. Ital J Agrometeorology vol 14, pp 16–17.
  10. Bacciu V, Pellizzaro G, Salis M, Arca B, Duce P, Spano D (2012) Estimating vegetation fire emissions from Sardinian wildland fires (2005–2009). In: Spano D, Bacciu V, Salis M, Sirca C (eds) Modelling fire behaviour and risk. Nuova Stampa Color, pp 34–40Google Scholar
  11. Barbosa PM, Grégoire JM, Pereira JMC (1999) An algorithm for extracting burned areas from time series of AVHRR GAC data applied at a continental scale. Remote Sens Environ 69:253–263CrossRefGoogle Scholar
  12. Battye W, Battye R (2002) Development of Emission Inventory Methods for Wildland Fire Final Report to US EPA. Contract # D205-01. Available at:
  13. Bell T, Adams M (2009) Smoke from Wildfires and Prescribed Burning in Australia: Effects on Human Health and Ecosystems. In: Bytnerowicz A, Arbaugh M, Riebau A, Andersen C (eds) Wildland fires and air pollution wildland fires and air pollution. Elsevier, AmsterdamGoogle Scholar
  14. Bovio G (2007) Method for forest fire damage level assessment based on detectable effects. In: Ciancio O, Corona P, Marinelli M, Pettenella D (eds) Evaluation of forest fire damages in Italy. Accademia Italiana di Scienze Forestali, Florence, pp 55–60Google Scholar
  15. Brown JK, Reinhardt ED, Fisher WC (1991) Predicting duff and woody fuel consumption in northern Idaho prescribed fires. For Sci 36(7):1550–1566Google Scholar
  16. Burling IR, Yokelson RJ, Akagi SK, Urbanski SP, Wold CE, Griffith DWT, Johnson TJ, Reardon J, Weise DR (2011) Airborne and ground-based measurements of the trace gases and particles emitted by prescribed fires in the United States. Chem Phys Atmos. doi: 10.5194/acp-11-12197-2011
  17. Carvalho AC, Carvalho A, Martins H, Marques C, Rocha A, Borrego C, Viegas DX, Miranda AI (2011) Fire weather risk assessment under climate change using a dynamical downscaling approach. Environ Model Softw 26(9):1123–1133CrossRefGoogle Scholar
  18. Chiriacò MV, Perugini L, Cimini D, D’Amato E, Valentini R, Bovio G, Corona P, Barbati A (2013) Comparison of approaches for reporting forest fire-related biomass loss and greenhouse gas emissions in Southern Europe. Int J Wildland Fire 22(6):730–738CrossRefGoogle Scholar
  19. Clinton NE, Peng G, Klaus S (2006) Quantification of pollutants from very large wildland fires in southern California, USA. Atmos Environ 40:3686–3695CrossRefGoogle Scholar
  20. Crutzen PJ, Andreae MO (1990) Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science 250:1669–1677CrossRefGoogle Scholar
  21. Crutzen PJ, Delany AC, Greenberg J, Haagenson P, Heidt L, Lueb R, Pollock W, Seiler W, Wartburg A, Zimmerman P (1985) Tropospheric chemical composition measurements in Brazil during the dry season. J Armos Chem 2:233–256CrossRefGoogle Scholar
  22. De Lauretis R, Caputo A, Dánica Cóndor R, Di Cristofaro E, Gagna A, Gonella B, Lena F, Liburdi R, Romano D, Taurino E, Vitullo M (2009) La disaggregazione a livello provinciale dell’inventario nazionale delle emissioni Anni 1990-1995-2000-2005. Rapporti 92/2009. Istituto Superiore per la Protezione e la Ricerca AmbientaleGoogle Scholar
  23. Debano LF, Neary DG, Ffolliott PF (1998) Fire’s effects on ecosystems. Wiley, New York, p 333Google Scholar
  24. Delmas RA et al. (1999) Experiment for regional sources and sinks of oxidants (EXPRESSO): an overview. J Geophys Res 104(D23) 30:609–624Google Scholar
  25. Dennis A, Fraser M, Anderson S, Allen D (2002) Air pollutant emissions associated with forest, grassland, and agricultural burning in Texas. Atmos Environ 36:3779–3792CrossRefGoogle Scholar
  26. Dimitrakopoulos AP (2002) Mediterranean fuel models and potential fire behavior in Greece. Int J Wildland Fire. doi: 10.1029/2001GL013484
  27. EFSA (2012) Update of the monitoring of levels of dioxins and PCBs in food and feed. EFSA J 10(7):2832, 82. doi: 10.2903/j.efsa.2012.2832
  28. EC (2011) Database for Global Atmospheric Research (EDGAR) release version 42. European Commission Joint Research Centre (JRC)/PBL Netherlands Environmental Assessment Agency Emission. http://edgarjrceceuropeeu
  29. Flannigan MD, Krawchuck MA, de Groot WJ, Wotton M, Gowman LM (2009) Implications of changing climate for global wildland fire. Int J Wildland Fire 18:483–507CrossRefGoogle Scholar
  30. Forster C et al. (2001) Transport of boreal forest fire emissions from Canada to Europe. J Geophys Res 106:22887–22906Google Scholar
  31. French NHF, Goovaerts P, Kasischke ES (2004) Uncertainty in estimating carbon emissions from boreal forest fires. J Geophys Res. doi: 10.1029/2003JD003635 Google Scholar
  32. French NHF et al (2011) Model comparisons for estimating carbon emissions from North American wildland fire. J Geophys Res. doi: 10.1029/2010JG001469 Google Scholar
  33. Fried JS, Torn MS, Mills E (2004) The impact of climate change on wildfire severity: a regional forecast for northern California. Clim Change 64:169–191CrossRefGoogle Scholar
  34. Friedli HR, Arellano AF, Cinnirella S, Pirrone N (2009a) Mercury emissions from global biomass burning: spatial and temporal distribution. Springer, New York, pp 193–220 (Chap. 8)Google Scholar
  35. Friedli H, Arellano A, Cinnirella S, Pirrone N (2009b) Initial estimates of mercury emissions to the atmosphere from global biomass burning. Environ Sci Technol 43:3507–3513CrossRefGoogle Scholar
  36. Galanter M, Levy H, Carmichael GR (2000) Impacts of biomass burning on tropospheric CO, NOx, and O3. J Geophys Res Atmos 105:6633–6653CrossRefGoogle Scholar
  37. Granier C, Bessagnet B, Bond T, D’Angiola A, van der Gon HG, Frost G, Heil A, Kainuma M, Kaiser J, Kinne S et al (2011) Evolution of anthropogenic and biomass burning emissions at global and regional scales during the 1980–2010 period. Clim Change. doi: 10.1007/s10584-011-0154-1 Google Scholar
  38. Hao WM, Liu MH, Crutzen PJ (1990) Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, based on the FAO statistics for the period 1975-80. In: Fire in the tropical biota. Ecosystem processes and global challenges Goldammer JG (ed) 440–462. Ecological Studies 84, Springer, Berlin, p 497Google Scholar
  39. Hao WM, Ward DE, Olbu G, Baker SP (1996) Emissions of CO2, CO, and hydrocarbons from fires in diverse African savanna ecosystems. J Geophys Res 101:23577–23584. doi: 10.1029/95jd02198 CrossRefGoogle Scholar
  40. Hardy CC, Conard SG, Regelbrugge JC, Teesdale DR (1996) Smoke emissions from prescribed burning of southern California chaparral. Research Paper PNW-RP-486. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station p 37Google Scholar
  41. Hardy CC, Ottmar RD, Peterson JL, Core JE, Seamon P (2001) Smoke management guide for prescribed and wildland fire: 2001 (ed) National Wildfire Coordination Group, Boise, ID, 2001. Available at Last access: 4 Aug 2011
  42. Hodzic A, Madronich S, Bohn B, Massie S, Menut L, Wiedinmyer C (2007) Wildfire particulate matter in Europe during summer 2003: meso-scale modeling of smoke emissions, transport and radiative effects. Atmos Chem Phys 7:4043–4064CrossRefGoogle Scholar
  43. Hoelzemann JJ, Schultz MG, Brasseur GP, Granier C (2004) Global wildland fire emission model (GWEM): evaluating the use of global area burnt satellite data. J Geophys Res 109 D14S04Google Scholar
  44. IPCC (2001) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 881Google Scholar
  45. Ito A, Penner JE (2004) Global estimates of biomass burning emissions based on satellite imagery for the year 2000. J Geophys Res Atmos 109, D14S05. doi: 10.1029/2003JD004423
  46. Hollis JJ, Matthews S, Ottmar RD, Prichard SJ, Slijepcevic A, Burrows ND, Ward B, Tolhurst KG, Anderson WR, Gould JS (2010) Testing woody fuel consumption models for application in Australian southern eucalypt forest fires. For Ecol Manag 260 (6):948–964, ISSN 0378-1127,  10.1016/j.foreco.2010.06.007
  47. Jaffe DI, Bertschi L, Jaegle P, Novelli JS, Reid H, Tanimoto R, Vingarzan Westphal DL (2004) Long-range transport of Siberian biomass burning emissions and impact on surface ozone in western North America. Geophys Res Lett 31:L16106. doi: 10.1029/2004GL020093 CrossRefGoogle Scholar
  48. Jain AK (2007) Global estimation of CO emissions using three sets of satellite data for burned area. Atmos Environ 41:6931–6940. doi: 10.1016/j.atmosenv.2006.10.021 CrossRefGoogle Scholar
  49. Kaufman YJ, Justice C, Flynn L, Kendall J, Prins E, Ward DE, Menzel P, Setzer A (1998) Potential global fire monitoring from EOS-MODIS. J Geophys Res 103:32215–32238CrossRefGoogle Scholar
  50. Knorr W, Lehsten V, Arneth A (2011) Determinants and predictability of global wildfire emissions. Atmospheric Chemistry and Physics Discussions, submitted to The Pan European Gas-Aerosols Climate Interaction Study (PEGASOS) Special IssueGoogle Scholar
  51. Koppmann R, Von Czapiewski K, Reid JS (2005) A review of biomass burning emissions, part I: gaseous emissions of carbon monoxide, methane, volatile organic compounds, and nitrogen containing compounds. Atmos Chem Phys Discuss 5:10455–10516CrossRefGoogle Scholar
  52. Korontzi S, Roy DP, Justice CO, Ward DE (2004) Modeling and sensitivity analysis of fire emissions in southern Africa during SAFARI 2000. Remote Sens Environ 92:255–275CrossRefGoogle Scholar
  53. Lacaux JP, Brustet JM, Delmas R, Menaut JC, Abbadie L, Bomsong B, Cachier H, Baudet J, Andreae MO, Helas G (1995) Biomass burning in the tropical savannas of Ivory 30 Coast: an overview of the field experiment fire of savannas (FOS/DECAFE 91). J Atmos Chem 22:195–216CrossRefGoogle Scholar
  54. Langmann B, Duncan B, Textor C, Trentmann J, van der Werf GR (2009) Vegetation fire emissions and their impact on air pollution and climate. Atmos Environ 43:107–116. doi: 10.1016/j.atmosenv.2008.09.047 CrossRefGoogle Scholar
  55. McMeeking GR, Kreidenweis SM, Baker S, Carrico CM, Chow JC, Collett JL Jr, Hao WM, Holden AS, Kirchstetter TW, Malm WC, Moosmuller H, Sullivan AP, Wold CE (2009) Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory. J Geophys Res 114:D19210. doi: 10.1029/2009jd011836 CrossRefGoogle Scholar
  56. McRae DJ (1980) Preliminary fuel consumption guidelines for prescribed burning in Ontario slash fuel complexes. Report O-X-316. Canadian Forest Service. Great Lakes Forest Research Centre, Sault Ste. Marie, OntarioGoogle Scholar
  57. Michel C, Liousse C, Grégoire J-M, Tansey K, Carmichael GR, Woo J-H (2005) Biomass burning emission inventory from burnt area data given by the SPOT-VEGETATION system in the frame of TRACE-P and ACE-Asia campaigns. J Geophys Res 110:D09304. doi: 10.1029/2004JD005461 Google Scholar
  58. Mieville A, Granier C, Liousse C, Guillaume B, Mouillot F, Lamarque J-F, Grégoire J-M, Pétron G (2010) Emissions of gases and particles from biomass burning using satellite data and an historical reconstruction. Atmos Environ 44:1469–1477. doi: 10.1016/j.atmosenv.2010.01.011 CrossRefGoogle Scholar
  59. Miranda AI, Marchi E, Ferretti M, Millan MM (2009a) Forest fires and air quality issues in Southern Europe. In: Bytnerowicz A, Arbaugh M, Riebau A, Andersen C (eds) Wildland fires and air pollutionwildland fires and air pollution. Elsevier, AmsterdamGoogle Scholar
  60. Miranda AI, Borrego C, Martins H, Martins V, Amorim JH, Valente J, Carvalho A (2009b) Forest fire emissions and air pollution in southern Europe. In: Chuvieco E (ed) Earth observation of wildland fires in Mediterranean ecosystems. Springer, BerlinGoogle Scholar
  61. Miranda AI, Coutinho M, Borrego C (1994) Forest fire emissions in Portugal: A contribution to global warming? Environ Pollut 83(1–2):121–123CrossRefGoogle Scholar
  62. Miranda AI, Ferreira J, Valente J, Santos P, Amorim JH, Borrego C (2005a) Smoke measurements during Gestosa-2002 experimental field fires. Int. J. Wildland Fire 14:107–116CrossRefGoogle Scholar
  63. Miranda AI, Borrego C, Sousa M, Valente J, Barbosa P, Carvalho A (2005b) Model of forest fire emissions to the atmosphere. Deliverable D252 of SPREAD Project (EVG1-CT-2001-00043). AMB-QA-07/2005. University of Aveiro, Aveiro, PortugalGoogle Scholar
  64. Miranda AI, Martins H, Carvalho A, Borrego C (2005c) Modelling smoke effects on Lisbon air quality. In: Proceedings in CD-Rom Sixth fire and forest meteorology symposium and the 19th Interior West Fire Council meeting, Oct 25–27. Canmore, AB, CanadaGoogle Scholar
  65. Mouillot F, Field CB (2005) Fire history and the global carbon budget: a 1°x1° fire history reconstruction for the 20th century. Global Change Biol 11(3):398–420CrossRefGoogle Scholar
  66. Naeher LP, Brauer M, Lipsett M, Zelikoff JT, Simpson CD, Koenig JQ, Smith KR (2007) Woodsmoke health effects: a review. Inhal Toxicol 19(1):67–106CrossRefGoogle Scholar
  67. Narayan C, Fernandes PM, van Brusselen J, Schuck A (2007) Potential for CO2 emission mitigation in Europe through prescribed burning in the context of the Kyoto Protocol. Forest Ecol Manag 251:164–173CrossRefGoogle Scholar
  68. Novelli PC, Masarie KA, Lang PM, Hall BD, Myers RC, Elkins JW (2003) Reanalysis of tropospheric CO trends: Effects of the 1997–1998 wildfires. J Geophys Res Atmos 108(D15):4464. doi: 10.1029/2002JD003031 CrossRefGoogle Scholar
  69. Ottmar RD, Miranda AI, Sandberg DV (2009) Characterizing sources of emissions from wildland fires. In: Bytnerowicz A, Arbaugh M, Riebau A, Andersen C (eds) Wildland fires and air pollutionwildland fires and air pollution. Elsevier, AmsterdamGoogle Scholar
  70. Ottmar RD, Prichard SJ, Vihnanek RE, Sandberg DV, Bluhn A (2006) Modification and validation of fuel consumption models for shrub and forested lands in Southwest, Pacific northwest, Rockies, Midwest, Southeast and Alaska. Final Report JFSP Project 98-1-9-06. USDA Forest Service, fire and environmental applications team, Pacific Northwest Research Station, Pacific Wildland Fire Sciences Laboratory, Seattle, WAGoogle Scholar
  71. Ottmar RD, Burns MF, Hall JN, Hanson AD (1993) Consume Version 1.0. General Technical Report PNW GTR 304. USDA Forest Service, Pacific Northwest Research StationGoogle Scholar
  72. Peterson JL (1987) Analysis and reduction of the errors of predicting prescribed burn emissions. Master’s thesis, University of Washington, Seattle, p 70Google Scholar
  73. Peterson J, Sandberg D (1988) A national PM10 inventory approach for wildfires and prescribed fires. In: Mathai C, Stonefield D (eds) Proceedings of the PM10 implementation of standards: an APCA/EPA international specialty conference, San Francisco, CAGoogle Scholar
  74. Prichard SJ, Ottmar RD, Anderson GK (2005) Consume 3.0 User’s Guide. United States Department of Agriculture Forest Service, Pacific Northwest Research Station, Seattle, WAGoogle Scholar
  75. Radke LF, Hegg DA, Hobbs PV, Nance JD, Lyons JH, Laursen KK, Weiss RE, Riggan PJ, Ward DE (1991) Particulate and trace gas emissions from large biomass fires in North America. In: Levine JS (eds) Global biomass burning: atmospheric, climatic, and biospheric implications, MIT Press, Cambridge, MA, pp 209–224Google Scholar
  76. Randerson JT, Liu H, Flanner MG, Chambers SD, Jin Y, Hess PG, Pfister G, Mack MC, Treseder KK, Welp LR, Chapin FS, Harden JW, Goulden ML, Lyons E, Neff JC, Schuur EAG, Zender CS (2006) The impact of boreal forest fire on climate warming. Science 314:1130–1132CrossRefGoogle Scholar
  77. Reid JS, Eck TF, Christopher SA, Koppmann R, Dubovik O, Eleuterio DP, Holben BN, Reid EA, Zhang J (2005) A review of biomass burning emissions part III: intensive optical properties of biomass burning particles. Atmos Chem Phys 5:827–849CrossRefGoogle Scholar
  78. Reinhardt ED, Keane RE, Brown JK (1997) First order fire effects model: FOFEM 4.0, User’s Guide. General Technical Report INT-GTR-344. USDA Forest Service, Intermountain Research Station, Ogden, UTGoogle Scholar
  79. Schollnberger H, Aden H, Scott BR (2002) Respiratory tract deposition efficiencies: evaluation of effects from smoke released in the Cerro Grande forest fire. J Aerosol Med 15:387–399CrossRefGoogle Scholar
  80. Schultz MG, Heil A, Hoelzemann JJ, Spessa A, Thonicke K, Goldammer JG, Held AC, Pereira JMC, van het Bolscher M (2008) Global wildland fire emissions from 1960 to 2000. Global Biogeochem Cycles 22, GB2002. doi: 10.1029/2007GB003031
  81. Seiler W, Crutzen P (1980) Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climatic Change 2:207–247CrossRefGoogle Scholar
  82. Shea RW, Shea BW, Kauffman JB, Ward DE, Haskins CI, Scholes MC (1996) Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia. J Geophys Res 101:23551–23568Google Scholar
  83. Simmonds PG, Manning AJ, Derwent RG, Ciais P, Ramonet M, Kazan V, Ryall D (2005) A burning question. Can recent growth rate anomalies in the greenhouse gases be attributed to large-scale biomass burning events? Atmos Environ 39:2513–2517CrossRefGoogle Scholar
  84. Sinha P, Hobbs PV, Yokelson RJ, Bertschi IT, Blake DR, Simpson IJ, Gao S, Kirchstetter TW, Novakov T (2003) Emissions of trace gases and particles from savanna fires in southern Africa. J Geophys Res 108:8487. doi: 10.1029/2002jd002325 CrossRefGoogle Scholar
  85. Spichtinger N, Wenig M, James P, Wagner T, Platt U, Stohl A (2001) Satellite detection of a continental-scale plume of nitrogen oxides from boreal forest fires. Geophys Res Lett 28:4579–4582CrossRefGoogle Scholar
  86. Stroppiana D, Brivio PA, Grégoire J-M, Liousse C, Guillaume B, Granier C, Mieville A, Chin M, Pétron G (2010) Comparison of global inventories of CO emissions from biomass burning derived from remotely sensed data. Atmos Chem Phys 10:12173–12189. doi: 10.5194/acp-10-12173-2010 CrossRefGoogle Scholar
  87. Swap RJ, Annegarn HJ, Suttles JT et al. (2003) Africa burning: a thematic analysis of the Southern African Regional Science Initiative (SAFARI 2000). J Geophys Res 108(D13), 30:8465. doi: 10.1029/2003JD003747
  88. Thonicke K, Spessa A, Prentice IC, Harrison SP, Dong L, Carmona-Moreno C (2010) The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model. Biogeosciences 7:1991–2011. doi: 10.5194/bg-7-1991-2010 CrossRefGoogle Scholar
  89. UNFCCC (2012) Report of the conference of the parties serving as the meeting of the parties to the Kyoto Protocol on its seventh session, held in Durban from 28 November to 11 December 2011. Part Two: Action taken by the Conference of the Parties serving as the meeting of the Parties to the Kyoto Protocol at its seventh session FCCC/KP/CMP/2011/10/Add.1Google Scholar
  90. Urbanski SP, Hao WM, Baker S (2009) Chemical composition of wildland fire emissions. In: Bytnerowicz A, Arbaugh M, Riebau A, Andersen C (eds) Wildland fires and air PollutionWildland fires and air pollution. Elsevier, AmsterdamGoogle Scholar
  91. Urbanski SP, Hao WM, Nordgren B (2011) The wildland fire emission inventory: western United States emission estimates and an evaluation of uncertainty. Atmos Chem Phys 11:12973–13000. doi: 10.5194/acp-11-12973-2011 CrossRefGoogle Scholar
  92. van der Werf GR, Randerson JT, Collatz GJ, Giglio L, Kasibhatla PS, Arellano AF, Olsen SC, Kasischke ES (2004) Continental-scale partitioning of fire emissions during the 1997 to 2001 El Nino/La Nina period. Science 303:73–76CrossRefGoogle Scholar
  93. van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Kasibhatla PS, Arellano AF (2006) Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos Chem Phys 6:3423–3441. doi: 10.5194/acp-6-3523-2006 CrossRefGoogle Scholar
  94. van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Mu M, Kasibhatla PS, Morton DC, DeFries RS, Jin Y, van Leeuwen TT (2010) Global fire emissions and the contribution of deforestation savanna forest agricultural and peat fires (1997–2009). Atmos Chem Phys 10:11707–11735. doi: 10.5194/acp-10-11707-2010 CrossRefGoogle Scholar
  95. van Vuuren DP, Edmonds JA, Kainuma M, Riahi K, Thomson AM, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose S (2011) The representative concentration pathways: an overview. Clim Change 109:5–31. doi: 10.1007/s10584-011-0148-z CrossRefGoogle Scholar
  96. Ward DE, Hardy CC (1991) Smoke emissions from wildland fires. Environ Int 17:117e–134Google Scholar
  97. Ward DE, Hao WM, Susott R, Babbitt R, Shea R (1996) Effect of fuel composition on combustion efficiency and emission factors for African savanna ecosystems. J Geophys Res 101(D19):23569–23576. doi: 10.1029/95JD02595 CrossRefGoogle Scholar
  98. Wiedinmyer C, Neff JC (2007) Estimates of CO2 from fires in the United States: implications for carbon management. Carbon Balance Manage 2:10. doi: 10.1186/1750-0680-2-10 CrossRefGoogle Scholar
  99. Wiedinmyer C, Akagi SK, Yokelson RJ, Emmons LK, Al-Saadi JA, Orlando JJ, Soja AJ (2010) The fire inventory from NCAR (FINN)—a high resolution global model to estimate the emissions from open burning. Geosci Model Dev Discuss 3:2439–2476. doi: 10.5194/gmdd-3-2439-2010 CrossRefGoogle Scholar
  100. Yokelson RJ, Karl T, Artaxo P, Blake DR, Christian TJ, Griffith DWT, Guenther A, Hao WM (2007) The tropical forest and fire emissions experiment: overview and airborne fire emission factor measurements. Atmos Chem Phys 7:5175–5196. doi: 10.5194/acp-7-5175-2007 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Valentina Bacciu
    • 1
    • 2
  • Donatella Spano
    • 1
    • 2
  • Michele Salis
    • 1
    • 2
  1. 1.Impacts on Agriculture, Forest and Natural Ecosystem Division (IAFENT)Euro-Mediterranean Centre on Climate Changes (CMCC)SassariItaly
  2. 2.Department of Science for Nature and Environmental Resources (DIPNET)University of SassariSassariItaly

Personalised recommendations