Advertisement

Biogenic Volatile Organic Compound Emissions

  • Rita Baraldi
  • Francesca Rapparini
  • Osvaldo Facini
  • Claudia Justina Kemper Pacheco
  • Giorgio Matteucci
  • Enzo Brancaleoni
  • Paolo Ciccioli
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

A GIS-based model was developed so to predict Biogenic Volatile Organic Compounds (BVOCs) emissions from the Italian forest ecosystems in order to estimate the fraction of the Net Primary Production lost as reduced carbon and to assess the impact of BVOCs in the formation of ozone and secondary organic aerosols. The performance of the model was verified by comparing the predictions with BVOC fluxes measured in a CarboItaly site using the gradient method with tethered balloon profiles, but also with BVOC fluxes measured in previous years. The agreement between observations and predictions indicated a rather accurate estimation of the model and confirmed the importance in the Italian peninsula of monoterpene emissions, expecially of the fast reacting sabinene in areas dominated by Fagus sylvatica L. and Castanea sativa L.

Keywords

Volatile Organic Compound Secondary Organic Aerosol Italian Peninsula Volatile Organic Compound Emission Biogenic Volatile Organic Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Arneth A, Harrison SP, Zaehle S, Tsigaridis K, Menon S, Bartlein PJ, Feichter J, Korhola A, Kulmala M, O’Donnell D, Schurgers G, Sorvari S, Vesala T (2010) Terrestrial biogeochemical feedbacks in the climate system. Nat Geosci 3:525–532CrossRefGoogle Scholar
  2. Atkinson R, Arey J (2003) Gas-phase troposperic chemistry of biogenic volatile organic compounds: a review. Atmos Environ 37:S197–S219CrossRefGoogle Scholar
  3. Baraldi R, Rapparini F, Rossi F, Latella A, Ciccioli P (1999) Volatile organic compound emissions from flowers of the most occurring and economically important species of fruit trees. Phys Chem Earth Part B 24(6):729–732CrossRefGoogle Scholar
  4. Carslaw KS, Boucher O, Spracklen DV, Mann GW, Rae JGL, Woodward S, Kulmala M (2010) A review of natural aerosol formation and feedbacks within the Earth system. Atmos Chem Phys 10:1701–1737CrossRefGoogle Scholar
  5. Ciccioli P, Brancaleoni E, Cecinato A, Brachetti A (1989) Diurnal and seasonal variations of Peroxyacetylnitrate (PAN) in a semirural area of Central Italy. In: Brasser G, Mulder WC (eds) Man and his ecosystem. Proceedings of the 8th world clean air congress, Elsevier Science Publ BV, Amsterdam, The Netherlands, vol. 3, pp 497–502Google Scholar
  6. Ciccioli P, Fabozzi C, Brancaleoni E, Cecinato A, Frattoni M, Loreto F, Kesselmeier J, Schafer L, Bode K, Torres L, Fugit JL (1997) Use of the isoprene algorithm for predicting the monoterpene emission from the Mediterranean holm oak Quercus ilex L.: Performances and limits of this approach. J Geophys Res 102(D19):23319–23328CrossRefGoogle Scholar
  7. Ciccioli P, Brancaleoni E, Frattoni M (1999) Reactive hydrocarbons in the atmosphere at urban and regional scales. In: Hewitt CN (ed) Reactive hydrocarbons in the atmosphere. Academic Press, San Diego, Chapter 5, pp 159–207Google Scholar
  8. Ciccioli P, Brancaleoni E, Frattoni M, Marta S, Brachetti A, Vitullo M, Tirone G, Valentini R (2003) Relaxed eddy accumulation, a new technique for measuring emission and deposition fluxes of volatile organic compounds by capillary gas chromatography and mass spectrometry. J Chromatogr A 985:283–296CrossRefGoogle Scholar
  9. Dindorf T, Kuhn U, Ganzeveld L, Schebeske G, Ciccioli P, Holzke C, Kőble R, Seufert G, Kesselmeier J (2006) Significant light and temperature dependent monoterpene emissions from European beech (Fagus sylvatica L.) and their potential impact on the European volatile organic compound budget. J Geophys Res 111:D16305–1–D16305–15. doi: 10.1029/2005JD006751 Google Scholar
  10. Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, Mckay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) A global-model of natural volatile organic-compound emissions. J Geophys Res—Atmos 100(D5):8873–8892Google Scholar
  11. Hoffmann T, Odum JR, Bowman F, Collins D, Klockow D, Flagan RC, Seinfeld JH (1997) Formation of organic aerosols from the oxidation of biogenic hydrocarbons. J Atmos Chem 26:189–222CrossRefGoogle Scholar
  12. INFC (2005) inventario nazionale delle foreste e dei serbatoi forestali di carbonio, estensione e composizione dei boschi (http://www.sian.it/inventarioforestale/jsp/dati_introa.jsp)
  13. Kesselmeier J, Ciccioli P, Kuhn U, Stefani P, Biesenthal T, Rottenberger S, Wolf A, Vitullo M, Valentini R, Nobre A, Kabat P, Andreae MO (2002) Volatile organic compound emissions in relation to plant carbon fixation and the terrestrial carbon budget. Global Biogeochem Cycles 16:1126. doi: 10.1029/2001GB001813 Google Scholar
  14. Kuhn U, Andreae MO, Ammann C, Araujo AC, Brancaleoni E, Ciccioli P, Dindorf T, Frattoni M, Gatti LV, Ganzeveld L, Kruijt B, Lelieveld J, Lloyd J, Meixner FX, Nobre AD, Poschl U, Spirig C, Stefani P, Thielmann A, Valentini R, Kesselmeier J (2007) Isoprene and monoterpene fluxes from Central Amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the local carbon budget. Atmos Chem Phys 7:2855–2879CrossRefGoogle Scholar
  15. Millán-Millán M, Salvador R, Mantilla E, Artınano B (1996) Meteorology and photochemical air pollution in southern Europe: experimental results from EC research projects. Atmos Environ 30:1909–1924CrossRefGoogle Scholar
  16. Moukhtar S, Bessagnat B, Rouil L, Simon V (2005) Monoterpene emissions from Beech (Fagus Sylvatica) in a French forest and impact on secondary pollutants formation at regional scale. Atmos Environ 39:3535–3547CrossRefGoogle Scholar
  17. Niinemets U, Kuhn U, Harley PC, Staudt M, Arneth A, Cescatti A, Ciccioli P, Copolovici L, Geron C, Guenther A, Kesselmeier J, Lerdau MT, Monson RK, Penuelas J (2011) Estimations of isoprenoid emission capacity from enclosure studies: measurements, data processing, quality and standardized measurement protocols. Biogeosciences 8:2209–2246CrossRefGoogle Scholar
  18. Odum JR, Hoffmann T, Bowman F, Collins D, Flagan RC, Seinfeld JH (1997) Gas/particle partitioning and secondary organic aerosol yields. Environ Sci Technol 30(8):2580–2585CrossRefGoogle Scholar
  19. Parra R, Gasso S, Baldasano JM (2004) Estimating the biogenic emissions of non-methane volatile organic compounds from the North Western Mediterranean vegetation of Catalonia Spain. Sci Total Environ 329:241–259CrossRefGoogle Scholar
  20. Paulson CA (1970) The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J Appl Meteorol 9:857–861CrossRefGoogle Scholar
  21. Simon V, Dumergues L, Ponche JL, Torres L (2006) The biogenic volatile organic compounds emission inventory in France. Application to plant ecosystems in the Berre-Marseilles area (France). Sci Total Environ 372:164–182CrossRefGoogle Scholar
  22. Staudt M, Bertin N, Frenzel B, Seufert G (2000) Seasonal variation in amount and composition of monoterpenes emitted by young Pinus Pinea trees—Implications for emission modelling. J Atmos Chem 35:77–99CrossRefGoogle Scholar
  23. Steinbrecher R, Smiatek G, Koble R, Seufert G, Theloke J, Hauff K, Ciccioli P, Vautard R, Curci G (2009) Intra- and inter-annual variability of VOC emissions from natural and seminatural vegetation in Europe and neighbouring countries. Atmos Environ 43:1380–1391CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Rita Baraldi
    • 1
  • Francesca Rapparini
    • 1
  • Osvaldo Facini
    • 1
  • Claudia Justina Kemper Pacheco
    • 2
  • Giorgio Matteucci
    • 3
    • 4
  • Enzo Brancaleoni
    • 2
  • Paolo Ciccioli
    • 2
  1. 1.Institute of BiometeorologyNational Research Council (CNR)BolognaItaly
  2. 2.Institute of Chemical MethodologiesCNRMonterotondo ScaloItaly
  3. 3.Institute for Agriculture and Forestry Systems in the MediterraneanCNRRendeItaly
  4. 4.Institute of Agroenvironmental and Forest BiologyCNRMonterotondo ScaloItaly

Personalised recommendations