Trying to Link Vegetation Units with Biomass Data: The Case Study of Italian Shrublands

  • Salvatore Pasta
  • Tommaso La Mantia
  • Serena Marras
  • Costantino Sirca
  • Donatella Spano
  • Riccardo Valentini
Part of the Environmental Science and Engineering book series (ESE)


Although their carbon stock is relevant in assessing the baseline for the negotiation of future agreements with respect to carbon balance, there still are few available studies concerning the biomass and the net ecosystem exchange capacity of Mediterranean shrublands. In this chapter a preliminary overview on the biomass values concerning Italian shrubland communities and/or their dominant/characteristic woody species is provided. Many useful data on above- and belowground biomass issued from investigations carried out in other Mediterranean countries and concerning plant communities, which share the same ecological, floristic and structural traits of Italian shrublands. A preliminary finding of this research is the uneven degree of knowledge concerning the different non-forest woody communities. For example, there is still no literature on the biomass of some 2/3 of all the considered phytosociological units. Besides, both the above and the below-ground biomass of many Mediterranean shrubs show a very wide range of variation as they are strongly influenced by progressive succession processes and by the nature, the intensity and the frequency of disturbance factors. Thus, direct measuring of these values for each vegetation unit and dominant woody species should be encouraged and intensified. Monitoring activities concerning biomass increase are recommended as well: as a matter of fact, at present reference data on this topic are so limited and variable that it is not possible to confidently estimate the annual growth of shrubland communities.


Carbon Stock Woody Species Belowground Biomass Vegetation Unit Mediterranean Shrub 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bianchi L, Calamini G, Gregari E, Paci M, Pallanza S, Pierguidi A, Salbitano F, Tani A, Vedele S (2002) Valutazione degli effetti del rimboschimento in zone aride della Sardegna, risultati preliminari sulla vegetazione. It For Mont 4:353–368Google Scholar
  2. Biondi E, Blasi C (eds) (2009) Manuale Italiano di Interpretazione degli Habitat della Direttiva 92/43 CEE (
  3. Blanco Oyonarte P, Navarro Cerrillo RM (2003) Aboveground phytomass models for major species in shrub ecosystems of Western Andalucia. Inv Agrar, Sistemas y Recursos Forestales 12(3):47–55Google Scholar
  4. Calvo PP (2007) Phenology, biomass and community composition changes in European shrublands submitted to experimental warming and drought. PhD thesis, Universitat de Barcellona, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Bellaterra, p 237Google Scholar
  5. Castro H, Freitas H (2009) Above-ground biomass and productivity in the montado, from herbaceous to shrub dominated communities. J Arid Envir 73:506–511CrossRefGoogle Scholar
  6. Catarino FM, Correia OCA, Correia AI (1982) Structure and dynamics of Serra da Arrábida Mediterranean vegetation. Ecol Medit 8(1–2):203–222Google Scholar
  7. Cherubini P, Gartner BL, Tognetti R, Bräker O, Schoch W, Innes JL (2003) Identification, measurement and interpretation of tree rings in woody species from Mediterranean climates. Biol Rev 78:119–148CrossRefGoogle Scholar
  8. Corona P, Calvani P, Mugnozza GS, Pompei E (2008) Modeling natural forest expansion on a landscape level by multinomial logistic regression. Plant Biosyst 142:509–517CrossRefGoogle Scholar
  9. Corona P, Ferrara A, La Marca O (1997) Sustainable management of forest for atmospheric CO2 depletion, the Italian case. J Sustain For 5(3–4):81–91CrossRefGoogle Scholar
  10. Corona P, Pasta S, Giardina G, La Mantia T (2012) Assessing the biomass of typical Mediterranean shrub communities biomass of Mediterranean shrubs. Plant Biosyst 146(2):252–257CrossRefGoogle Scholar
  11. Costa G, La Mantia T (2005) Il ruolo della macchia mediterranea nello stoccaggio del carbonio atmosferico. Foresta@ 2(4):378–387. (online)
  12. Curcó A, Ibáñez C, Day JW, Prat N (2002) Net primary production and decomposition of salt marshes of the Ebre Delta (Catalonia, Spain). Estuaries 25(3):309–324Google Scholar
  13. De Dato GD, Loperfido L, De Angelis P, Valentini R (1999) Establishment of a planted field with Mediterranean shrubs in Sardinia and its evaluation for climate mitigation and to combat desertification in semi-arid regions. iForest 2:77–84. (online 2009-06-10)
  14. Fioravanti R (1999) Produttività ed allocazione della biomassa in una lecceta della Tenuta Presidenziale di Castelporziano. Tesi di Laurea, Università degli Studi della Tuscia ViterboGoogle Scholar
  15. García LV, Marañón T, Moreno A, Clemente L (1993) Above-ground biomass and species richness in a Mediterranean salt marsh. J Veg Sc 4:417–424CrossRefGoogle Scholar
  16. Gratani L, Amadori M, Veri L, Bruno F, Porri M (1980) Determinazione di un metodo di stima della biomassa nella macchia di Castelporziano (Lazio). Ann Bot 41(1):131–151Google Scholar
  17. Gratani L, Crescente MF (2000) Map-making of plant biomass and leaf index for management of protected areas. Aliso 19(1):1–12Google Scholar
  18. Hilbert DW, Canadell J (1995) Biomass partitioning and resource allocation of plants from Mediterranean-type ecosystems, possible responses to elevated atmospheric CO2. In: Moreno JM, Oechel WC (eds) Global change and Mediterranen-type ecosystems, Ecological Studies 117. Springer, New York, pp 76–101CrossRefGoogle Scholar
  19. La Mantia T, Rühl J, Pasta S, Campisi D, Terrazzino G (2008) Structural analysis of woody species in Mediterranean old fields. Plant Biosyst 142(3):462–471CrossRefGoogle Scholar
  20. Laffoley (d’A) D, Grimsditch G (eds.) (2009) The management of natural coastal carbon sinks. IUCN, Gland, Switzerland, p 53Google Scholar
  21. Margaris NS (1976) Structure and dynamics in a phryganic (East Mediterranean) ecosystem. J Biogeogr 3:249–259CrossRefGoogle Scholar
  22. Merino J, Martín Vicente A (1981) Biomass, productivity and succession in the scrub of the Doñana Biological Reserve in Southwest Spain. In: Margaris NS, Mooney HA (eds.) Components of productivity of Mediterranean-climate regions. Basic and applied aspects, pp 197–203Google Scholar
  23. Montès N, Bertaudière-Montes V, Badri W, El-Zaoui H, Gauquelin T (2002) Biomass and nutrient content of a semi-arid mountain ecosystem, the Juniperus thurifera L. woodland of Azzaden Valley (Morocco). For Ecol Manage 166:35–43CrossRefGoogle Scholar
  24. Navarro Cerrillo RM, Blanco Oyonarte PB (2006) Estimation of above-ground biomass in shrubland ecosystems of southern Spain. Investigación Agraria Sistémas y Recursos Forestales 15:197–207CrossRefGoogle Scholar
  25. Neves JP, Ferreira LF, Simões MP, Gazarini LC (2007) Primary production and nutrient content in two salt marsh species, Atriplex portulacoides L. and Limoniastrum monopetalum L. in Southern Portugal. Estuaries and Coasts 30(3):459–468Google Scholar
  26. Neves JP, Simões MP, Ferreira LF, Madeira M, Gazarini LC (2010) Comparison of biomass and nutrient dynamics between an invasive and a native species in a Mediterranean saltmarsh. Wetlands 30(4):817–826CrossRefGoogle Scholar
  27. Otto R, Fernández Palacios F, María J, Krüsi BO (2001) Variation in species composition and vegetation structure of succulent scrub on Tenerife in relation to environmental variation. J Veg Sci 12:237–248CrossRefGoogle Scholar
  28. Peressotti A, Asunis C, Cesaraccio C (1999) Stima della biomassa e della copertura vegetale di un ecosistema mediterraneo a macchia, il caso della riserva integrale Arca di Noè. Collana Tecnico-scientifica INAPA, Monitoraggio di un ecosistema a macchia mediterranea, misure ecofisiologiche e micrometeorologiche. Quaderno 6:81–86Google Scholar
  29. Rapp M, Loissant P (1981) Some aspects of mineral cycling in the garrigue of southern France. In: Di Castri F, Goodall DW, Specht RL (eds) Mediterranean-type shrublands. Elsevier Scientific Publishing Company, Amsterdam, pp 289–301Google Scholar
  30. Sağlam B, Küçük O, Bilgili E, Dinç Durmaz B, Baysal I (2008) Estimating fuel biomass of some shrub species (maquis) in Turkey. Turk J Agric For 32:349–356Google Scholar
  31. Scarton F, Day JW, Rismondo A (2002) Primary production and decomposition of Sarcocornia fruticosa (L.) Scott and Phragmites australis Trin. ex Steudel in the Po Delta. Italy. Estuaries Coasts 25(3):325–336CrossRefGoogle Scholar
  32. Scarton F (2006) Produttività primaria epigea di sette alofite in laguna di Venezia. Boll Mus Civ St Nat Venezia 57(2):53–72Google Scholar
  33. Sternberg M, Shoshany M (2001) Above-ground biomass allocation and water content relationship in Mediterranean trees and shrubs in two climatological regions in Israel. Plant Ecol 157:171–179CrossRefGoogle Scholar
  34. Usò JL, Mateu J, Karjalainen T, Salvador P (1997) Allometric regression equations to determine aerial biomasses of Mediterranean shrubs. Plant Ecol 132:59–69CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Salvatore Pasta
    • 1
  • Tommaso La Mantia
    • 1
  • Serena Marras
    • 2
    • 3
  • Costantino Sirca
    • 2
    • 3
  • Donatella Spano
    • 2
    • 3
  • Riccardo Valentini
    • 4
  1. 1.Department of Agricultural and Forestry SciencesUniversity of PalermoPalermoItaly
  2. 2.Department of Natural and Territorial ScienceUniversity of SassariSassariItaly
  3. 3.Impacts on Agriculture, Forest and Natural Ecosystem Division (IAFENT)Euro-Mediterranean Center on Climate Changes (CMCC)SassariItaly
  4. 4.Impacts on Agriculture, Forest and Natural Ecosystem Division (IAFENT)Euro-Mediterranean Center on Climate Changes (CMCC)ViterboItaly

Personalised recommendations